1
|
Wang YX, Liu XL, Li WQ, Wang YR, Li KW, Pan ZC, Mu Y. Boosting bioelectricity generation in bioelectrochemical systems with nitrogen-doped three-dimensional graphene aerogel anode. WATER RESEARCH 2024; 265:122244. [PMID: 39146657 DOI: 10.1016/j.watres.2024.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Bioelectricity generation by electrochemically active bacteria has become particularly appealing due to its vast potential in energy production, pollution treatment, and biosynthesis. However, developing high-performance anodes for bioelectricity generation remains a significant challenge. In this study, a highly efficient three-dimensional nitrogen-doped macroporous graphene aerogel anode with a nitrogen content of approximately 4.38 ± 0.50 at% was fabricated using hydrothermal method. The anode was successfully implemented in bioelectrochemical systems inoculated with Shewanella oneidensis MR-1, resulting in a significantly higher anodic current density (1.0 A/m2) compared to the control one. This enhancement was attributed to the greater biocapacity and improved extracellular electron transfer efficiency of the anode. Additionally, the N-doped aerogel anode demonstrated excellent performance in mixed-culture inoculated bioelectrochemical systems, achieving a high power density of 4.2 ± 0.2 W/m², one of the highest reported for three-dimensional carbon-based bioelectrochemical systems to date. Such improvements are likely due to the good biocompatibility of the N-doped aerogel anode, increased extracellular electron transfer efficiency at the bacteria/anode interface, and selectively enrichment of electroactive Geobacter soli within the NGA anode. Furthermore, based on gene-level Picrust2 prediction results, N-doping significantly upregulated the conductive pili-related genes of Geobacter in the three-dimensional anode, increasing the physical connection channels of bacteria, and thus strengthening the extracellular electron transfer process in Geobacter.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China; Postdoctoral Research Station of Haitian Water Group Co., Ltd, Chengdu, Sichuan 610041, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ran Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Ke-Wan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Zhi-Cheng Pan
- Postdoctoral Research Station of Haitian Water Group Co., Ltd, Chengdu, Sichuan 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
2
|
Adhikari A, Chhetri K, Rai R, Acharya D, Kunwar J, Bhattarai RM, Jha RK, Kandel D, Kim HY, Kandel MR. (Fe-Co-Ni-Zn)-Based Metal-Organic Framework-Derived Electrocatalyst for Zinc-Air Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2612. [PMID: 37764640 PMCID: PMC10534837 DOI: 10.3390/nano13182612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Zinc-air batteries (ZABs) have garnered significant interest as a viable substitute for lithium-ion batteries (LIBs), primarily due to their impressive energy density and low cost. However, the efficacy of zinc-air batteries is heavily dependent on electrocatalysts, which play a vital role in enhancing reaction efficiency and stability. This scholarly review article highlights the crucial significance of electrocatalysts in zinc-air batteries and explores the rationale behind employing Fe-Co-Ni-Zn-based metal-organic framework (MOF)-derived hybrid materials as potential electrocatalysts. These MOF-derived electrocatalysts offer advantages such as abundancy, high catalytic activity, tunability, and structural stability. Various synthesis methods and characterization techniques are employed to optimize the properties of MOF-derived electrocatalysts. Such electrocatalysts exhibit excellent catalytic activity, stability, and selectivity, making them suitable for applications in ZABs. Furthermore, they demonstrate notable capabilities in the realm of ZABs, encompassing elevated energy density, efficacy, and prolonged longevity. It is imperative to continue extensively researching and developing this area to propel the advancement of ZAB technology forward and pave the way for its practical implementation across diverse fields.
Collapse
Affiliation(s)
- Anup Adhikari
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Kisan Chhetri
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Rajan Rai
- Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Debendra Acharya
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Jyotendra Kunwar
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal; (A.A.); (J.K.)
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University, Jeju 690-756, Republic of Korea;
| | | | | | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea; (D.A.); (H.Y.K.)
| | - Mani Ram Kandel
- Department of Chemistry, Amrit Campus, Tribhuvan University, Kathmandu 44613, Nepal
| |
Collapse
|