1
|
Xiang S, Lan Y, Lu L, Sun C, Lai Y, Mai Z, Tian F, Fu E, Zhong H, Cui F, Mao H, Song C. A novel alternative strategy for monitoring and insight into liver fibrosis progression: The combination of surface-enhanced Raman spectroscopy (SERS) and gut microbiota. Biosens Bioelectron 2023; 225:115082. [PMID: 36693287 DOI: 10.1016/j.bios.2023.115082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/09/2022] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Nowadays, the studies on the interaction and relationship between the intestinal microorganisms and liver diseases are increasing. However, it is still a huge challenge for the in-depth investigation and dynamic monitoring of such a complex network. Herein, a significant discovery was made. A strong association between gut microbial structural and functional genomics and SERS spectra of hepatocytes were revealed. Based on the study of gut microbes and SERS spectra, complementary information could be provided for the mechanism analysis of related diseases. Liver fibrosis, a chronic liver disease that lack specific cure was thus comprehensive studied. Liver targeting gold nanoparticle dimers were prepared as the SERS tags, and abundant SERS peak signals were acquired. Meanwhile, the gut microbiomes were also comparative studied. The changes of carbohydrates and lipids in liver cells were observed at the early stages of liver fibrosis, and TLR4 (toll-like receptors 4) was activated to elicit immune responses. Then again, oxidative stress, endotoxin and serum inflammatory factors were the major observations at the late stages. The SERS signals and the microbiome analysis were well confirmed and complemented each other, which suggested that the detection strategy could be another valuable method for the "gut-liver axis" study.
Collapse
Affiliation(s)
- Songtao Xiang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China; Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - YuXiang Lan
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Lin Lu
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Chenqi Sun
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Yong Lai
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, 646000, PR China
| | - Zhiliang Mai
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Feng Tian
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Erhua Fu
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China
| | - Huiqing Zhong
- State Institute of Biophotonics, South China Normal University, Guangzhou, 510631, PR China
| | - Feiyun Cui
- School of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, PR China
| | - Hua Mao
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, PR China.
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, 646000, PR China.
| |
Collapse
|
2
|
Xiang S, Lan Y, Mai Z, Tian F, Mao H. Dynamic monitoring of bacteriostatic process by SERS analysis based on a simple but effective detection strategy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121611. [PMID: 35988511 DOI: 10.1016/j.saa.2022.121611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Investigating antibacterial process at a molecular level is helpful to fully understand the mechanism of bacteriostasis and develop new antimicrobial agents. Herein, a simple but effective sensor strategy of antibacterial nanocomposite combined with surface-enhanced Raman scattering (SERS) substrate was applied for the robust detection of bacteriostatic process. The synergistic SERS effect of nanocomposite and Ag nanoparticles (NPs) substrate was confirmed by finite difference time domain (FDTD) solutions. A curcumin liposome@Au NPs nanocomposite was designed and prepared as a kind of bacteriostatic agent and SERS material as well. By means of electrostatic attraction between the nanocomposite and bacteria (methicillin resistant staphylococcus aureus, MRSA), specific detection of MRSA and monitoring of the molecular structure changes after bacteriostaticeffect were realized by SERS. Important intermediates produced in the bacteriostatic process were also measured at the same time. The relationship between the relative peak intensities and the structure of MRSA were thus established. The results were verified by high performance liquid chromatography-mass spectrometry (HPLC-MS), reactive oxygen species (ROS) kit, and flow cytometry. The detection strategy we proposed could not only be used for real-time detection of bacteriostatic processes with a high efficiency, but also a powerful tool for analyzing the mechanism in biochemical processes.
Collapse
Affiliation(s)
- Songtao Xiang
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxiang Lan
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhiliang Mai
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Feng Tian
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Hua Mao
- Department of Digestive Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
3
|
Xia J, Li W, Sun M, Wang H. Application of SERS in the Detection of Fungi, Bacteria and Viruses. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3572. [PMID: 36296758 PMCID: PMC9609009 DOI: 10.3390/nano12203572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/12/2023]
Abstract
In this review, we report the recent advances of SERS in fungi, bacteria, and viruses. Firstly, we briefly introduce the advantage of SERS over fluorescence on virus identification and detection. Secondly, we review the feasibility analysis of Raman/SERS spectrum analysis, identification, and fungal detection on SERS substrates of various nanostructures with a signal amplification mechanism. Thirdly, we focus on SERS spectra for nucleic acid, pathogens for the detection of viruses and bacteria, and furthermore introduce SERS-based microdevices, including SERS-based microfluidic devices, and three-dimensional nanostructured plasmonic substrates.
Collapse
Affiliation(s)
- Jiarui Xia
- Institute of Health Sciences, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, China Medical University, Shenyang 110001, China
| | - Wenwen Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiting Wang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
4
|
Cao L, Liu H, Xie W, Jiao S, Wu X, Yuan K, Zhou X, Yang M, Guan Y, Cai H, Lai Z, Chen J, Zhou H. Real-time monitoring of aristolochic acid I reduction process using surface-enhanced Raman Spectroscopy with DFT simulation. Biosens Bioelectron 2021; 179:113061. [DOI: 10.1016/j.bios.2021.113061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
|