1
|
Zhang J, Zhao L, Xue Y, Wang AJ, Mei LP, Song P, Feng JJ. A split-type photoelectrochemical sensor based on In 2S 3/PCN-224 Z-scheme heterojunction for ultrasensitive detection of ampicillin. Mikrochim Acta 2025; 192:144. [PMID: 39934406 DOI: 10.1007/s00604-025-07009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
A ultrasensitive split-type photoelectrochemical (PEC) sensor was constructed for ampicillin (AMP) detection, utilizing a metal-organic framework (MOF)-confined In2S3/PCN-224 Z-scheme heterojunction as the photoactive material. The prepared In2S3/PCN-224 was demonstrated with high charge separation efficiency and a stable PEC signal response due to the unique electron flow direction of the Z-scheme configuration. To further enhance the detection sensitivity, target-mediated in-situ ion exchange via Cd2+ ions was employed to modulate the photoactivity of In2S3/PCN-224. In the presence of AMP, the aptamers labeled with CdCO3 were released from the DNA double-strand and then dissociated into Cd2+ ions after acid treatment. Ion exchange reactions will occur upon introducing the solution into the In2S3/PCN-224 surface. Another photoactive material may be produced on the electrode surface to amplify the original PEC signal. The resulting split-type PEC sensor exhibited an impressive linear range (0.5-200 ng mL-1) with a low limit of detection (LOD, 0.09 pg mL-1, S/N = 3). This work presents a promising strategy for the development of PEC biosensors, offering practical applications in the environmental analysis of antibiotics.
Collapse
Affiliation(s)
- Jin Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Lei Zhao
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Yadong Xue
- Central Laboratory and Precision Medicine Center, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Ping Mei
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pei Song
- Central Laboratory and Precision Medicine Center, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, China.
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Sciences, Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
2
|
Bao C, Deng L, Huang F, Yang M, Li X. Signal amplification strategies in photoelectrochemical sensing of carcinoembryonic antigen. Biosens Bioelectron 2024; 262:116543. [PMID: 38963951 DOI: 10.1016/j.bios.2024.116543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Early detection of cancer markers is critical for cancer diagnosis and cancer therapy since these markers may indicate cancer risk, incidence, and disease prognosis. Carcinoembryonic antigen (CEA) is a type of non-specific and broad-spectrum cancer biomarker commonly utilized for early cancer diagnosis. Moreover, it serves as an essential tool to assess the efficacy of cancer treatment and monitor tumor recurrence as well as metastasis, thus garnering significant attention for precise and sensitive CEA detection. In recent years, photoelectrochemical (PEC) techniques have emerged as prominent methods in CEA detection due to the advantages of PEC, such as simple equipment requirements, cost-effectiveness, high sensitivity, low interference from background signals, and easy of instrument miniaturization. Different signal amplification methods have been reported in PEC sensors for CEA analysis. Based on these, this article reviews PEC sensors based on various signal amplification strategies for detection of CEA during the last five years. The advantages and drawbacks of these sensors were discussed, as well as future challenges.
Collapse
Affiliation(s)
- Chengqi Bao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Lei Deng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Feng Huang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Minghui Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| | - Xiaoqing Li
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China; Furong Labratory, Changsha, 410083, China; National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, 410083, China.
| |
Collapse
|
3
|
Xi Z, Xing J, Yuan R, Yuan Y. Covalent organic frame based high-performance nanocomposite for construction of ATP sensor. Biosens Bioelectron 2024; 250:116081. [PMID: 38316088 DOI: 10.1016/j.bios.2024.116081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
In this work, a novel covalent organic frame (TAPT-TFPB COF) with self-enhanced photoelectric activity was prepared for decorating on conductive single-walled carbon nanotubes (SWCNT) to synthetize a high-performance photoelectric nanocomposite (COF/SWCNT), in which the interfacial charge separation and photogenerated carrier migration rate was significantly improved to obtain desiring photoelectric conversion efficiency for generating an extremely high photocurrent. Accordingly, the synthetic COF/SWCNT was ingeniously applied in the fabrication of ultrasensitive photoelectrochemical (PEC) biosensor for realizing the trace ATP detection by integrating with an Exo III-assisted dual DNA recycling amplification strategy. The recycling amplification could efficiently convert trace target ATP into plentiful output DNA, which ingeniously triggered the hybridization chain reaction (HCR) to generate a long DNA strand with substantial quencher manganese porphyrin (MnPP) loading to depress the photocurrent of COF/SWCNT. The experimental data showed that proposed biosensor had a detection range from 10 fmol L-1 to 10 nmol L-1 with the detection limit as low as 2.75 fmol L-1 (S/N = 3). In addition, this proposed biosensor showed excellent analytical performance in terms of stability, specificity and reproducibility, providing a possibility to accomplish sensitive and accurate in vitro diagnosis.
Collapse
Affiliation(s)
- Zhiyi Xi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Juan Xing
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Yali Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
4
|
Li M, Liu M, Qi F, Lin FR, Jen AKY. Self-Assembled Monolayers for Interfacial Engineering in Solution-Processed Thin-Film Electronic Devices: Design, Fabrication, and Applications. Chem Rev 2024; 124:2138-2204. [PMID: 38421811 DOI: 10.1021/acs.chemrev.3c00396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Interfacial engineering has long been a vital means of improving thin-film device performance, especially for organic electronics, perovskites, and hybrid devices. It greatly facilitates the fabrication and performance of solution-processed thin-film devices, including organic field effect transistors (OFETs), organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light-emitting diodes (OLEDs). However, due to the limitation of traditional interfacial materials, further progress of these thin-film devices is hampered particularly in terms of stability, flexibility, and sensitivity. The deadlock has gradually been broken through the development of self-assembled monolayers (SAMs), which possess distinct benefits in transparency, diversity, stability, sensitivity, selectivity, and surface passivation ability. In this review, we first showed the evolution of SAMs, elucidating their working mechanisms and structure-property relationships by assessing a wide range of SAM materials reported to date. A comprehensive comparison of various SAM growth, fabrication, and characterization methods was presented to help readers interested in applying SAM to their works. Moreover, the recent progress of the SAM design and applications in mainstream thin-film electronic devices, including OFETs, OSCs, PVSCs and OLEDs, was summarized. Finally, an outlook and prospects section summarizes the major challenges for the further development of SAMs used in thin-film devices.
Collapse
Affiliation(s)
- Mingliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ming Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
Hill NS, Cowley MV, Gluck N, Fsadni MH, Clarke W, Hu Y, Wolf MJ, Healy N, Freitag M, Penfold TJ, Richardson G, Walker AB, Cameron PJ, Docampo P. Ionic Accumulation as a Diagnostic Tool in Perovskite Solar Cells: Characterizing Band Alignment with Rapid Voltage Pulses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302146. [PMID: 37145114 DOI: 10.1002/adma.202302146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/26/2023] [Indexed: 05/06/2023]
Abstract
Despite record-breaking devices, interfaces in perovskite solar cells are still poorly understood, inhibiting further progress. Their mixed ionic-electronic nature results in compositional variations at the interfaces, depending on the history of externally applied biases. This makes it difficult to measure the band energy alignment of charge extraction layers accurately. As a result, the field often resorts to a trial-and-error process to optimize these interfaces. Current approaches are typically carried out in a vacuum and on incomplete cells, hence values may not reflect those found in working devices. To address this, a pulsed measurement technique characterizing the electrostatic potential energy drop across the perovskite layer in a functioning device is developed. This method reconstructs the current-voltage (JV) curve for a range of stabilization biases, holding the ion distribution "static" during subsequent rapid voltage pulses. Two different regimes are observed: at low biases, the reconstructed JV curve is "s-shaped", whereas, at high biases, typical diode-shaped curves are returned. Using drift-diffusion simulations, it is demonstrated that the intersection of the two regimes reflects the band offsets at the interfaces. This approach effectively allows measurements of interfacial energy level alignment in a complete device under illumination and without the need for expensive vacuum equipment.
Collapse
Affiliation(s)
- Nathan S Hill
- School of Mathematics, Statistics and Physics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Matthew V Cowley
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Nadja Gluck
- Department of Chemical Engineering, 20 Research Way (Building 82), Monash University Clayton Campus, Monash, VIC, 3800, Australia
| | - Miriam H Fsadni
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Will Clarke
- Mathematical Sciences University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Yinghong Hu
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, 81377, München, Germany
| | - Matthew J Wolf
- Institute of Physical Chemistry, RWTH Aachen University, 52074, Aachen, Germany
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Noel Healy
- School of Mathematics, Statistics and Physics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Marina Freitag
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Thomas J Penfold
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Giles Richardson
- Mathematical Sciences University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Alison B Walker
- Department of Physics, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Petra J Cameron
- Centre for Sustainable and Circular Technologies, Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Pablo Docampo
- School of Chemistry, University of Glasgow, University P1, Glasgow, G12 8QQ, UK
| |
Collapse
|
6
|
Wang K, Gao X, Chen J, Yang X. Label-free photoelectrochemical immunosensing of α-fetoprotein based on Eu-TiO 2 nanocomposites sensitized with dye-encapsulated HMA. ANAL SCI 2023:10.1007/s44211-023-00326-4. [PMID: 36961621 DOI: 10.1007/s44211-023-00326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/14/2023] [Indexed: 03/25/2023]
Abstract
In this study, a sensitive photoelectrochemical immunosensor with dye-enhanced anodic photocurrent response was proposed for sensitive detection of α-fetoprotein (AFP). Specifically, europium-doped TiO2 (Eu-TiO2) was used as the photoelectrochemical functional material and coated onto indium tin oxide (ITO) electrode. Doxorubicin (DOX) as an excellent fluorescent dye was encapsulated in the hydrophobically modified alginate (HMA). Then the dye-loaded HMA was modified onto the surface of Eu-TiO2 to further sensitize the photocurrent response. The results showed that the photoelectrical signal was enhanced and stabilized due to the effect of sensitization of DOX on Eu-TiO2 material. The constructed PEC sensor revealed a good linear response to AFP antigen ranging from 0.5 to 100 ng/mL with a detection limit of 0.41 pg/mL. The clinical patient's serum test results obtained from the proposed PEC immunosensor were consistent with those obtained from the commercial electrochemilunescence assay. The proposed PEC sensing method could be a promising analytical tool for the detection of AFP in clinical analysis.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Xue Gao
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China
| | - Jianfeng Chen
- Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, People's Republic of China
| | - Xiaoyan Yang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, People's Republic of China.
| |
Collapse
|
7
|
Photoelectrochemical biosensor based on FTO modified with BiVO4 film and gold nanoparticles for detection of miRNA-25 biomarker and single-base mismatch. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin. Catal Letters 2022. [DOI: 10.1007/s10562-021-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Li T, Hao Y, Dong H, Li C, Liu J, Zhang Y, Tang Z, Zeng R, Xu M, Chen S. Target-Induced In Situ Formation of Organic Photosensitizer: A New Strategy for Photoelectrochemical Sensing. ACS Sens 2022; 7:415-422. [PMID: 35156812 DOI: 10.1021/acssensors.1c02595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Small-molecule photosensitizers have great application prospects in photoelectrochemical (PEC) sensing due to their defined composition, diversified structure, and adjustable photophysical properties. Herein, we propose a new strategy for PEC analysis based on the target-induced in situ formation of the organic photosensitizer. Taking thiophenol (PhSH) as a model analyte, we designed and synthesized a 2,4-dinitrophenyl (DNP)-caged coumarin precursor (Dye-PhSH), which was then covalently coupled onto the TiO2 nanoarray substrate to obtain the working photoanode. Due to the intramolecular photoinduced electron transfer process, Dye-PhSH has only a very weak photoelectric response. Upon reacting with the target, Dye-PhSH undergoes a tandem reaction of the detachment of the DNP moiety and the intramolecular cyclization process, which leads to a coumarin dye with a pronounced photoelectric effect, thus achieving a highly selective turn-on PEC response to PhSH. For the first time, this study was to construct a PEC sensor by exploiting specific organic reactions for the in situ generation of small molecule-based photoactive material. It can be anticipated that the proposed strategy will expand the paradigm of PEC sensing and holds great potential for detecting various other analytes.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuanqiang Hao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Chunlan Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Jiaxiang Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Rongjin Zeng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu 476000, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
10
|
Wang Y, Yang M, Shi H, Ge S, Wang X, Yu J. Photoelectrochemical Detection of Exosomal miRNAs by Combining Target-Programmed Controllable Signal Quenching Engineering. Anal Chem 2022; 94:3082-3090. [PMID: 35133793 DOI: 10.1021/acs.analchem.1c04086] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs extracted from exosomes (exosomal miRNAs) have recently emerged as promising biomarkers for early prognosis and diagnosis. Thus, the development of an effective approach for exosomal miRNA monitoring has triggered extensive attention. Herein, a sensitive photoelectrochemical (PEC) biosensing platform is demonstrated for exosomal miRNA assay via the target miRNA-powered λ-exonuclease for the amplification strategy. The metal-organic framework (MOF)-decorated WO3 nanoflakes heterostructure is constructed and implemented as the photoelectrode. Also, a target exosomal miRNA-activatable programmed release nanocarrier was fabricated, which is responsible for signal control. Hemin that acted as the electron acceptor was prior entrapped into the programmed control release nanocarriers. Once the target exosomal miRNAs-21 was introduced, the as-prepared programmed release nanocarriers were initiated to trigger the release of hemin, which enabled the quenching of the photocurrent. Under the optimized conditions, the level of exosomal miRNAs-21 could be accurately tracked ranging from 1 fM to 0.1 μM with a low detection limit of 0.5 fM. The discoveries illustrate the possibility for the rapid and efficient diagnosis and prognosis prediction of diseases based on the detection of exosomal miRNAs-21 and would provide feasible approaches for the fabrication of an efficient platform for clinical applications.
Collapse
Affiliation(s)
- Yanhu Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Mengchun Yang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Huihui Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, P.R. China
| | - Xiao Wang
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P.R. China
| |
Collapse
|
11
|
Enhanced electrocatalytic hydrogen evolutions of Co(II)phthalocyanine through axially coordinated pyridine-pyrene. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Hu X, Zhang N, Shen L, Yu L, Huang LY, Wang AJ, Shan D, Yuan PX, Feng JJ. The enhanced photoelectrochemical platform constructed by N-doped ZnO nanopolyhedrons and porphyrin for ultrasensitive detection of brain natriuretic peptide. Anal Chim Acta 2021; 1183:338870. [PMID: 34627528 DOI: 10.1016/j.aca.2021.338870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022]
Abstract
Nowadays, brain natriuretic peptide (BNP-32) is fundamental to early cardiovascular clinical diagnosis, whose accurate assay is of significance by photoelectrochemistry (PEC) for the low background and high precision. Herein, a novel enhanced PEC platform was built by successive deposition of N-doped ZnO nanopolyhedra (N-ZnO NP) and protoporphyrin IX (PPIX). Specifically, the N-ZnO NP with a narrow bandgap of 2.60 eV was synthesized by direct calcination of zeolitic imidazole framework-8 (ZIF-8), and performed as the substrate to enhance the photocurrents of PPIX (as photosensitizer) whose photoelectron transfer pathway and enhanced PEC mechanism were studied in detail. Under such foundation, a label-free PEC aptasensor was developed by deposition of DNA aptamer onto the PEC platform and then ultrasensitive assay of BNP-32 based on a "signal off" model. The biosensor showed a wide linear range (1 pg mL-1- 0.1 μg mL-1) with a limit of detection (LOD) as low as 0.14 pg mL-1. This doping technique of ZnO nanomaterials provides some valuable guidelines for synthesis of advanced PEC probes in bioanalysis.
Collapse
Affiliation(s)
- Xiang Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Nuo Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Luan Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Li-Yan Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Dan Shan
- Sino-French Laboratory of Biomaterials and Bioanalytical Chemistry, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
13
|
Ling P, Sun X, Chen N, Cheng S, Gao X, Gao F. Electrochemical biosensor based on singlet oxygen generated by molecular photosensitizers. Anal Chim Acta 2021; 1183:338970. [PMID: 34627523 DOI: 10.1016/j.aca.2021.338970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 11/27/2022]
Abstract
Here a sensing strategy with the integration of photosensitizer and electrochemical analysis was present. The photosensitizer, Zinc(II) tetraphenylporphyrin (ZnTCPP), was functionalized graphene oxide (GO) to form complex (ZnTCPP/GO) as the electrode material and generated singlet-oxygen (1O2) in the presence of air under light illumination. Due to the special electronic structure of 1O2, hydroquinone (HQ) could react with 1O2 to produce electrochemically-detectable products, benzoquinone (BQ). Meanwhile, the formed BQ could be reduced on the electrode, completing the redox cycling. The ZnTCPP/GO modified ITO electrode produces a stable and enhanced photocurrent signal under 420 nm irradiation in air-saturated buffer, compared with in N2-saturated buffer. On the other hand, l-glutathione (GSH) as a signalling molecule plays important role in physiological process, which was employed as model to investigated the sensing performance. Coupling with HQ oxidized by 1O2, a GSH sensor was constructed on the basis the redox cycling of HQ. A sensitive reduction of photocurrent is observed with the addition of GSH, due to the GSH could be oxidized by the generated 1O2 to form GSSG. The biosensor displayed good performance in a broad concentration range of 0-150 μM, with a lower detection limit of 1.3 μM at an S/N ratio of 3, and could be used in practical application. This work affords a platform for constructing the biosensor with 1O2 instead of enzyme via on/off light switching.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Nuo Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Shan Cheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, PR China.
| |
Collapse
|
14
|
Abstract
An emerging concept, nanoarchitectonics, is supposed to work on the preparation of functional materials systems from nanoscale components. Because porphyrin derivatives show their importance in many research targets, discussions on nanoarchitectonics with porphyrins and related molecules would provide meaningful opportunities to consider effective usages of the nanoarchitectonics. This review article explains various examples of nanoarchitectonics approaches with porphyrin derivatives. The examples are especially focused on two topics: (i) materials nanoarchitectonics for nanofibers, metal-organic frameworks, covalent organic frameworks, and hydrogen-bonded organic frameworks; (ii) interfacial nanoarchitectonics for surface monolayers (self-assembled monolayers), Langmuir-Blodgett films, and layer-by-layer assemblies. Functions and properties can be enhanced upon their organization in specific dimensions and arrangements in nanostructured frameworks. In many cases, interface-specific organization would lead to advanced performances with high efficiency and specificity. Even though only limited examples are described here, various possibilities are actually suggested. Not limited to porphyrin families, nanoarchitectonics for functional materials has to be considered with a wide range of materials.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
15
|
Cai Y, Zhang Y, Wang H, Lin X, Yu K, Li C, Jie G. Cyclometalated Iridium(III) Complex-Sensitized NiO-Based-Cathodic Photoelectrochemical Platform for DNA Methyltransferase Assay. ACS APPLIED BIO MATERIALS 2021; 4:6103-6111. [PMID: 35006914 DOI: 10.1021/acsabm.1c00445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This work reports an efficient [(C6)2Ir(dppz)]+PF6- (C6 = coumarin 6 and dppz = dipyridophenazine)-sensitized NiO photocathode and its application in photoelectrochemical (PEC) bioanalysis field for the first time. This dye-sensitized NiO photocathode was found to exhibit a markedly enhanced cathodic photocurrent. A sensitive cathodic PEC platform was proposed integrating the as-prepared photocathode with enzyme-free cascaded amplification strategies of the catalytic hairpin assembly (CHA) and the hybridization chain reaction (HCR) for DNA methyltransferase (MTase) assay. A hairpin DNA(HDam) with specific recognition site of Dam MTase in its stem was designed. The site of HDam was methylated in the presence of Dam MTase and then cut by endonuclease DpnI. The released loop fragment, as an initiator, triggered the CHA circuit and the follow-up HCR circuit, resulting in long dsDNA concatemers on the ITO electrode. Numerous [(C6)2Ir(dppz)]+PF6- were intercalated into dsDNA, and highly efficient signal amplification was realized. Benefiting from the superior iridium(III) complex-sensitized NiO photocathode and effective amplification strategy, a detection limit of 0.0028 U/mL for the determination of Dam MTase was achieved. Moreover, this work further demonstrated that these proposed tactics could be applied to screen Dam MTase activity inhibitors.
Collapse
Affiliation(s)
- Yueyuan Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yingtao Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Huan Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaojia Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kunpeng Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Chunxiang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
16
|
Zou HY, Kong FY, Lu XY, Lu MJ, Zhu YC, Ban R, Zhao WW, Wang W. Enzymatic photoelectrochemical bioassay based on hierarchical CdS/NiO heterojunction for glucose determination. Mikrochim Acta 2021; 188:243. [PMID: 34231032 DOI: 10.1007/s00604-021-04882-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023]
Abstract
The design and development of a 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis is introduced. Specifically, NiO nanoflakes (NFs) were in situ formed on carbon fibers via a facile liquid-phase deposition method followed by an annealing step and subsequent integration with CdS quantum dots (QDs). The glucose oxidase (GOx) was then coated on the photocathode to allow the determination of glucose. Under 5 W 410 nm LED light and at a working voltage of 0.0 V (vs. Ag/AgCl), this method can assay glucose concentrations down to 1.77×10-9 M. The linear range was 5×10-7 M to 1×10-3 M, and the relative standard deviation (RSD) was below 5%. The photocathodic biosensor achieved target detection with high sensitivity and selectivity. This work is expected to stimulate more passion in the development of innovative hierarchical heterostructures for advanced self-powered photocathodic bioanalysis. Design of 3D hierarchical CdS/NiO heterojunction and its application in a self-powered cathodic photoelectrochemical (PEC) bioanalysis.
Collapse
Affiliation(s)
- Hui-Yu Zou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Fen-Ying Kong
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Xin-Yang Lu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meng-Jiao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Yuan-Cheng Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. .,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, China.
| | - Rui Ban
- School of Chemical Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China. .,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Murphy RB, Johnston MR. A temperature switchable pyridyl-zinc(II) side arm porphyrin with functionality for surface immobilisation. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A pyridyl side arm porphyrin incorporating C[Formula: see text] alkyl chains at the periphery of the porphyrin suitable for surface immobilisation on HOPG has been synthesised and tested for two state switching in solution. Temperature switching, involving reversible complexation of a covalently appended pyridyl side arm to the Zn(II) porphyrin, was comprehensively characterised by using variable temperature 1H NMR (-30 to +100[Formula: see text]C) and UV-vis (10 to 90[Formula: see text]C) in toluene. Molecular modelling assisted in understanding strain within the complex.
Collapse
Affiliation(s)
- Rhys B. Murphy
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, Australia
- Current address: Research School of Chemistry, Australian National University, Australian Capital Territory, Australia
| | - Martin R. Johnston
- Flinders Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
18
|
Magna G, Nardis S, Stefanelli M, Monti D, Di Natale C, Paolesse R. The strength in Numbers! Porphyrin hybrid nanostructured materials for chemical sensing. Dalton Trans 2021; 50:5724-5731. [PMID: 33949554 DOI: 10.1039/d1dt00528f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of chemical sensors is an urgent need for both environmental and health issues. The breakthrough needed for the advancement of these devices is the development of efficient receptors. Porphyrins have been widely used as sensing layers in chemical sensors, but their integration with nanostructures can greatly boost the performance of these macrocycles, improving from one side the stability of the sensing layer, and from the other, offering additional interaction mechanisms with target analytes. We present here some recent examples of hybrid materials prepared by the integration of porphyrins with metal and metal oxide nanoparticles, porphyrin-based metal organic frameworks and their exploitation as sensing layers in chemical sensors.
Collapse
Affiliation(s)
- Gabriele Magna
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Sara Nardis
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Donato Monti
- Department of Chemistry, University of Roma La Sapienza, 00185 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Roberto Paolesse
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
19
|
Yang X, Zhang M, Chen Z, Bu Y, Gao X, Sui Y, Yu Y. Sodium Alginate Micelle-Encapsulating Zinc Phthalocyanine Dye-Sensitized Photoelectrochemical Biosensor with CdS as the Photoelectric Material for Hg 2+ Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16828-16836. [PMID: 33784812 DOI: 10.1021/acsami.1c00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple and selective photoelectrochemical (PEC) biosensor was constructed for Hg2+ detection based on zinc phthalocyanine (ZnPc) dye-sensitized CdS using alginate not only as a carrier but also as a binder. First, CdS as a photoactive material was in situ modified on the electrode surface using a rapid and simple electrodeposition to obtain an initial photocurrent signal. Second, ZnPc was loaded in the amphiphilic alginate micelle and then was coated onto the CdS film surface via alginate as the binder. The photocurrent was subsequently enhanced due to the favorable dye sensitization effect of ZnPc to CdS. Finally, the thymine-rich probe DNA was immobilized on the modified ITO surface via coupling reaction between the carbonyl groups of the amphiphilic polymer and the amino groups of the probe DNA. In the presence of Hg2+, the thymine-Hg2+-thymine (T-Hg2+-T) structure was formed due to the specific bond of Hg2+ with thymine, resulting in the decrease of photocurrent due to the increase of steric hindrance on the modified electrode surface. The proposed PEC biosensor for Hg2+ detection possessed a wide linear range from 10 pM to 1.0 μM with a detection limit of 5.7 pM. This biosensor provides a promising platform for detecting other biomolecules of interest.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mengjie Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zixuan Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuwei Bu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xue Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yongkun Sui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yueqin Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
20
|
Sun J, Li L, Ge S, Zhao P, Zhu P, Wang M, Yu J. Dual-Mode Aptasensor Assembled by a WO 3/Fe 2O 3 Heterojunction for Paper-Based Colorimetric Prediction/Photoelectrochemical Multicomponent Analysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3645-3652. [PMID: 33430583 DOI: 10.1021/acsami.0c19853] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The programed bimodal photoelectrochemical (PEC)-sensing platform based on DNA structural switching induced by targets binding to aptamers was innovatively designed for the simultaneous detection of mucin 1 (MUC1) and microRNA 21 (miRNA-21). To promote excellent current intensity as well as enhance the sensitivity of aptasensors, the evenly distributed WO3/Fe2O3 heterojunction was prepared as a transducer material, notably reducing the background signal response and extending the absorption of light. The multifunctional paper-based biocathode was assembled to provide a visual colorimetric assay. When introducing the integrated signal probe (ISP) composed of signal probe 1 (sP1) and signal probe 2 (sP2) on paper-based working units modified with gold nanoparticles (AuNPs), recognition sites of two targets were formed. In the presence of MUC1 protein, both sP1 and the target on the working unit were released into the corresponding colorimetric unit because of the DNA specific recognition. The horseradish peroxidase-streptavidin (HRP-SA) carried by free sP1 could oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to turn a blue-colored oxidized TMB (oxTMB) in the presence of hydrogen peroxide (H2O2), which ultimately gained a higher photocurrent signal. Furthermore, miRNA-21 was modified on another working unit by binding with sP2, leading to changes in the current signal and thus enabling real-time detection of analytes with the assistance of a digital multimeter. The PEC aptasensor offered a wide dynamic range of 10 fg·mL-1-100 ng mL-1 for MUC1 and 0.1 pM-10 nM for miRNA-21, with a low detection limit of 3.4 fg·mL-1 and 36 fM, respectively. It laid the foundation for synchronous detection of multiple analytes and initiated a new way for the enhancement in modern next-generation disease diagnosis.
Collapse
Affiliation(s)
- Jianli Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Shenguang Ge
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, PR China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mingliang Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
21
|
Li H, Zhao Y, Yue ME, Jie G. Signal-off photoelectrochemical biosensing platform based on hybridization chain-doped manganese porphyrin quenching on CdSe signal coupling with cyclic amplification for thrombin detection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Li J, Weng X, Mo F, Han M, Li H. Superparamagnetic Nanostructures Coupled with an Entropy-Driven DNA Circuit for Elegant and Robust Photoelectrochemical Biosensing. Anal Chem 2020; 92:15145-15151. [DOI: 10.1021/acs.analchem.0c03580] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuan Weng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Fan Mo
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Min Han
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
23
|
Yin D, Ning X, Zhang R, Du P, Zhang D, Deng Y, Liu J, Zhang Q, Zhang Z, Lu X. Enhancing Charge Separation through Oxygen Vacancy-Mediated Reverse Regulation Strategy Using Porphyrins as Model Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001752. [PMID: 32930502 DOI: 10.1002/smll.202001752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Highly efficient charge separation has been demonstrated as one of the most significant steps playing decisive roles in enhancing the overall efficiency of photoelectrochemical (PEC) processes. In this study, by employing 5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin-Ni (NiTCPP) as a prototype, an oxygen vacancy (Vo)-mediated reverse regulation strategy is proposed for tuning hole transfer, which in turn can accelerate the transport of electrons and thus enhancing charge separation. The optimal NiO/NiTCPP system exhibits much higher (≈40 times) photocurrent and longer (≈13 times) lifetime of charge carriers compared with those of pure NiTCPP. Furthermore, the electron transfer kinetic rate constant (Keff ) is quantitatively determined by an efficient scanning photoelectrochemical microscopy (SPECM). The Keff of the optimal system has a 5.7-fold improvement. In addition, the similar enhancement in charge separation from other semiconductors (CoTCPP and FeTCPP) are also observed, indicating that the Vo-mediated reverse regulation strategy is a promising pathway for tuning the properties of light harvesters in solar energy conversion.
Collapse
Affiliation(s)
- Dan Yin
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Qi Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
24
|
Meng Z, Li G, Yiu S, Zhu N, Yu Z, Leung C, Manners I, Wong W. Nanoimprint Lithography‐Directed Self‐Assembly of Bimetallic Iron–M (M=Palladium, Platinum) Complexes for Magnetic Patterning. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhengong Meng
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
- College of Chemistry and Environmental Engineering Low-dimensional Materials Genome Initiative Shenzhen University Xueyuan Road Shenzhen Guangdong P. R. China
| | - Guijun Li
- State Key Laboratory of Ultra-Precision Machining Technology and Department of Industrial and Systems Engineering The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Sze‐Chun Yiu
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| | - Nianyong Zhu
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
| | - Zhen‐Qiang Yu
- College of Chemistry and Environmental Engineering Low-dimensional Materials Genome Initiative Shenzhen University Xueyuan Road Shenzhen Guangdong P. R. China
| | - Chi‐Wah Leung
- Department of Applied Physics The Hong Kong Polytechnic University Hung Hom Hong Kong P. R. China
| | - Ian Manners
- Department of Chemistry University of Victoria Victoria BC V8P 5C2 Canada
| | - Wai‐Yeung Wong
- Department of Chemistry Hong Kong Baptist University Waterloo Road Kowloon Tong Hong Kong P. R. China
- Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University (PolyU) Hung Hom Hong Kong P. R. China
- PolyU Shenzhen Research Institute Shenzhen 518057 P. R. China
| |
Collapse
|
25
|
Surface molecular engineering of axial-exchanged Fe(III)Cl- and Mn(III)Cl-porphyrins towards enhanced electrocatalytic ORRs and OERs. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Zhang Z, Zhou H, Jiang C, Wang Y. Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Meng Z, Li G, Yiu SC, Zhu N, Yu ZQ, Leung CW, Manners I, Wong WY. Nanoimprint Lithography-Directed Self-Assembly of Bimetallic Iron-M (M=Palladium, Platinum) Complexes for Magnetic Patterning. Angew Chem Int Ed Engl 2020; 59:11521-11526. [PMID: 32243037 DOI: 10.1002/anie.202002685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 01/10/2023]
Abstract
Self-assembly of d8 metal polypyridine systems is a well-established approach for the creation of 1D organometallic assemblies but there are still challenges for the large-scale construction of nanostructured patterns from these building blocks. We describe herein the use of high-throughput nanoimprint lithography (NIL) to direct the self-assembly of the bimetallic complexes [4'-ferrocenyl-(2,2':6',2''-terpyridine)M(OAc)]+ (OAc)- (M=Pd or Pt; OAc=acetate). Uniform nanorods are fabricated from the molecular self-organization and evidenced by morphological characterization. More importantly, when top-down NIL is coupled with the bottom-up self-assembly of the organometallic building blocks, regular arrays of nanorods can be accessed and the patterns can be controlled by changing the lithographic stamp, where the mold imposes a confinement effect on the nanorod growth. In addition, patterns consisting of the products formed after pyrolysis are studied. The resulting arrays of ferromagnetic FeM alloy nanorods suggest promising potential for the scalable production of ordered magnetic arrays and fabrication of magnetic bit-patterned media.
Collapse
Affiliation(s)
- Zhengong Meng
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.,College of Chemistry and Environmental Engineering, Low-dimensional Materials Genome Initiative, Shenzhen University, Xueyuan Road, Shenzhen, Guangdong, P. R. China
| | - Guijun Li
- State Key Laboratory of Ultra-Precision Machining Technology and Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Sze-Chun Yiu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Nianyong Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Low-dimensional Materials Genome Initiative, Shenzhen University, Xueyuan Road, Shenzhen, Guangdong, P. R. China
| | - Chi-Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Wai-Yeung Wong
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong, Hong Kong, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University (PolyU), Hung Hom, Hong Kong, P. R. China.,PolyU Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
28
|
Li H, Guo C, Liu C, Ge L, Li F. Laser-induced graphene hybrid photoelectrode for enhanced photoelectrochemical detection of glucose. Analyst 2020; 145:4041-4049. [PMID: 32367085 DOI: 10.1039/d0an00252f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The combination of an electrocatalyst with a semiconductor light absorber is of great importance to increase the efficiency of photoelectrochemical (PEC) glucose detection. Here, in situ and synchronous fabrication of a Ni-based electrocatalyst (NiEC) and CdS semiconductor in laser-induced graphene (LIG) on indium-tin oxide glass is demonstrated via a one-step laser-induced solid phase transition. A series of component and structural characterization experiments suggest that the laser-induced NiEC uniformly disperses in the hybrid nanocomposite and exists mainly in the Ni0 and NiO states. Moreover, both electrochemical and PEC investigations confirm that the as-prepared hybrid photoelectrode exhibits excellent photoelectrocatalytic ability towards glucose, which is not only attributed to the strong synergistic interaction between CdS and NiEC, but also benefited from the high conductivity as well as 3D macroporous configuration of the simultaneously formed LIG, providing the key factor to achieve sensitive non-enzymatic PEC glucose sensors. Therefore, the laser-induced hybrid photoelectrode is then applied to the PEC detection of glucose, and a low detection limit of 0.4 μM is obtained with good stability, reproducibility, and selectivity. This study provides a promising paradigm for the facile and binder-free fabrication of an electrocatalyst-semiconductor-graphene hybrid photoelectrode, which will find potential applications in sensitive PEC biosensing for a broad range of analytes.
Collapse
Affiliation(s)
- Hui Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | | | | | | | | |
Collapse
|
29
|
Li F, Wang S, Yin H, Chen Y, Zhou Y, Huang J, Ai S. Photoelectrochemical Biosensor for DNA Formylation Detection in Genomic DNA of Maize Seedlings Based on Black Tio 2-Enhanced Photoactivity of MoS 2/WS 2 Heterojunction. ACS Sens 2020; 5:1092-1101. [PMID: 32159349 DOI: 10.1021/acssensors.0c00036] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
5-Formylcytosine (5fC) is a rare base found in mammalian DNA, which is thought to be involved in the demethylation of DNA. As a stable epigenetic modification, 5fC participates in gene regulation and cell differentiation, and plays an important role in the growth and development of plants. However, the abundance of 5fC is only as low as 0.002-0.02% of cytosine. Therefore, to further understand the functions of 5fC, a rapid, highly sensitive, and efficient method is needed for detecting 5fC. Herein, a novel photoelectrochemical (PEC) biosensor was constructed for 5fC detection, where a MoS2/WS2 nanosheet heterojunction was employed as a photoactive material, amino-functionalized Fe3O4 and SMCC were used as a linker, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole was adopted as 5fC recognition reagent, and black TiO2 (B-TiO2) was used as a signal amplification unit. Under the optimal experimental conditions, this PEC biosensor showed a wide linear range of 0.01-200 nM and a low detection limit of 2.7 pM (S/N = 3). Due to the specific covalent reaction between -NH2 and -CHO, the biosensor presented high detection sensitivity, even discriminating 5fC with 5-methylcytosine and 5-hydroxymethylcytosine. The biosensor was then applied to investigate the effect of heavy metal Cd2+ on 5fC content in the root, stem, and leaves of maize seedlings.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Siyu Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Yan Chen
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Jing Huang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
30
|
Jiang Q, Wang H, Wei X, Wu Y, Gu W, Hu L, Zhu C. Efficient BiVO 4 photoanode decorated with Ti 3C 2T X MXene for enhanced photoelectrochemical sensing of Hg(II) ion. Anal Chim Acta 2020; 1119:11-17. [PMID: 32439049 DOI: 10.1016/j.aca.2020.04.049] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
Abstract
A highly sensitive photoelectrochemical (PEC) sensing platform was constructed for Hg2+ determination based on the Schottky heterojunction between an emerging 2D material Ti3C2TX MXene and a promising semiconductor material BiVO4. Through simply spin-coating the single-layer Ti3C2TX onto the surface of BiVO4 film, the modified electrode exhibited significantly enhanced PEC activity. However, the boost in photocurrent could be noticeably suppressed due to the consumption of hole-scavenging agents (reduced glutathione) by the added Hg2+. Owing to the selective decrease in the photocurrent with the addition of Hg2+, the PEC sensor based on BiVO4/Ti3C2TX displayed a wide linear range from 1 pM to 2 nM with the limit of detection down to 1 pM. Moreover, the PEC sensor also exhibited satisfactory accuracy and repeatability in practical sample water, the Yangtze River water, demonstrating the great potential for monitoring heavy metal ions in natural water resources.
Collapse
Affiliation(s)
- Qianqian Jiang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Hengjia Wang
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Xiaoqian Wei
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Yu Wu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China
| | - Wenling Gu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| | - Liuyong Hu
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| | - Chengzhou Zhu
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, 430079, PR China.
| |
Collapse
|
31
|
Wang YW, Nan LJ, Jiang YR, Fan MF, Chen J, Yuan PX, Wang AJ, Feng JJ. A robust and efficient aqueous electrochemiluminescence emitter constructed by sulfonate porphyrin-based metal-organic frameworks and its application in ascorbic acid detection. Analyst 2020; 145:2758-2766. [PMID: 32091034 DOI: 10.1039/c9an02442e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The robust and strong electrochemiluminescence (ECL) emission of organic emitters in an aqueous solution is crucial for expanding their applications in early diagnosis. Herein, a Zn porphyrin-based metal-organic framework ((Zn)porphMOF) was facilely obtained by chelating Zn(ii)meso-tetra (4-sulfonatophenyl) porphine (Zn-TSPP) with Zn ions, showing substantially enhanced ECL radiation with K2S2O8 as the coreactant via the "reduction-oxidation" route in aqueous media. In contrast with Zn-TSPP, (Zn)porphMOF displayed 22-fold increase in the ECL intensity because of the agglomeration effect. By virtue of the dramatic confinement towards the energy and electron transfer of ascorbic acid (AA) during the ECL process, an ultrasensitive biosensor was developed with a wide linear range (3.77 to 26.4 μM) and ultra-low detection limit of 0.29 μM at 3 times of the signal-to-noise ratio (3S/N). This work offers a feasible avenue to harvest the steady and boosted ECL responses of organic molecules in aqueous media, also greatly expanding the MOF applications in bioanalysis.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Key laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tian J, Zhao P, Zhang S, Huo G, Suo Z, Yue Z, Zhang S, Huang W, Zhu B. Platinum and Iridium Oxide Co-modified TiO 2 Nanotubes Array Based Photoelectrochemical Sensors for Glutathione. NANOMATERIALS 2020; 10:nano10030522. [PMID: 32183132 PMCID: PMC7153253 DOI: 10.3390/nano10030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
Abstract
Oriented TiO2 nanotubes, which are fabricated by anodic oxidation method, are prospective in photoelectrochemical analysis and sensors. In this work, Pt and IrO2 co-modified TiO2 nanotubes array was prepared via a two-step deposition process involving the photoreductive deposition of Pt and chemical deposition of IrO2 on the oriented TiO2 nanotubes. Due to the improved separation of photo-generated electrons and holes, Pt-IrO2 co-modified TiO2 nanotubes presented significantly higher PEC activity than pure TiO2 nanotubes or mono-modified TiO2 nanotubes. The PEC sensitivity of Pt-IrO2 co-modified TiO2 nanotubes for glutathione was also monitored and good sensitivity was observed.
Collapse
Affiliation(s)
- Jing Tian
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Peng Zhao
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Shasha Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Guona Huo
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Zhaochen Suo
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
- Correspondence: (Z.Y.); (B.Z.)
| | - Shoumin Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Weiping Huang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
| | - Baolin Zhu
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China; (J.T.); (P.Z.); (S.Z.); (G.H.); (Z.S.); (S.Z.); (W.H.)
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
- Correspondence: (Z.Y.); (B.Z.)
| |
Collapse
|
33
|
Attatsi IK, Zhu W, Liang X. Noncovalent immobilization of Co( ii)porphyrin through axial coordination as an enhanced electrocatalyst on carbon electrodes for oxygen reduction and evolution. NEW J CHEM 2020. [DOI: 10.1039/c9nj02408e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Noncovalent immobilization of Co(ii)porphyrin on carbon nanotubes through axial coordination provides significantly enhanced electrochemically catalyzed oxygen reduction and oxygen evolution.
Collapse
Affiliation(s)
- Isaac Kwaku Attatsi
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
| | - Weihua Zhu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
- State Key Laboratory of Coordination Chemistry
| | - Xu Liang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang 212013
- P. R. China
- State Key Laboratory of Coordination Chemistry
| |
Collapse
|
34
|
Li H, Xia X, Guo C, Ge L, Li F. Laser-induced nano-bismuth decorated CdS–graphene hybrid for plasmon-enhanced photoelectrochemical analysis. Chem Commun (Camb) 2020; 56:13784-13787. [DOI: 10.1039/d0cc05907b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Direct-laser-writing of a plasmonic Bi0-based hybrid photoelectrode with a significantly amplified and stable photocurrent response is successfully demonstrated to provide a highly sensitive PEC sensing platform.
Collapse
Affiliation(s)
- Hui Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Xin Xia
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Chengxiang Guo
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| |
Collapse
|
35
|
Fu B, Wu W, Gan L, Zhang Z. Bulk/Surface Defects Engineered TiO 2 Nanotube Photonic Crystals Coupled with Plasmonic Gold Nanoparticles for Effective in Vivo Near-Infrared Light Photoelectrochemical Detection. Anal Chem 2019; 91:14611-14617. [PMID: 31660734 DOI: 10.1021/acs.analchem.9b03733] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoelectrochemical (PEC) techniques are of fundamental and practical importance, and they have been widely used for solar energy conversion and experimental protection. Besides these important applications, an emerging and fast developing PEC application of PEC bioanalysis is receiving more attention from both academic and clinic communities. However, the typical PEC biosensing is still limited under illumination of ultraviolet and visible (UV/vis) light, which hampers its in vivo detection in deep tissues. Expanding the optical absorption wavelength of photoelectrodes from the UV/vis light region into the near-infrared (NIR) light region is highly desirable due to its deep tissue penetrability and minimal invasiveness for organisms, but the exploration of a facile strategy to implement efficient NIR absorption with biocompatible materials is still a big challenge. Herein, under the guidance of theorical calculations, we propose a strategy through modulation of bulk/surface defects and decoration of Au nanoparticles on TiO2 nanotube photonic crystals to implement efficient NIR response and thus successfully realize sensitive and selective PEC detection of antibiotics in real bio- and experimental-samples under NIR illumination. In addition, we first implement the in vivo PEC detection under illumination of NIR light. We have faith that this new NIR photoelectric responsive strategy will provide a broad platform for detection of life-related biomolecules in deep tissues or even in vivo for real-time measurement and shed light on the intrinsic connections between biomarkers and clinical diseases.
Collapse
Affiliation(s)
- Baihe Fu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Wenlong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| | - Liyong Gan
- Institute for Structure and Function and Department of Physics , Chongqing University , Chongqing 400030 , China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , China
| |
Collapse
|
36
|
Zhang Y, Gao W, Ji S, Zhao D, Bai X, Xue H, Jia N. An ingenious molecularly imprinted photo-induced sensor for ultrasensitive determination of sulfadiazine based on the urchin-shaped Bi2S3. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134619] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Wang J, Lv W, Wu J, Li H, Li F. Electropolymerization-Induced Positively Charged Phenothiazine Polymer Photoelectrode for Highly Sensitive Photoelectrochemical Biosensing. Anal Chem 2019; 91:13831-13837. [DOI: 10.1021/acs.analchem.9b03311] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Jiahui Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|
38
|
Zhao CQ, Ding SN. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|