1
|
Sakata M, Imaizumi Y, Iwasawa T, Kato K, Goda T. Semiconductor Transistor-Based Detection of Epithelial-Mesenchymal Transition via Weak Acid-Induced Proton Perturbation. ACS Biomater Sci Eng 2025; 11:586-594. [PMID: 39663573 DOI: 10.1021/acsbiomaterials.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Developing new detection methods for the epithelial-mesenchymal transition (EMT), where epithelial cells acquire mesenchymal traits, is crucial for understanding tissue development, cancer invasion, and metastasis. Conventional in vitro EMT evaluation methods like permeability measurements are time-consuming and low-throughput, while the transepithelial electrical resistance measurements struggle to differentiate between cell membrane damage and tight junction (TJ) loss and are affected by cell proliferation. In this study, we developed a pH perturbation method to detect TJ barrier disruption during epithelial EMT by sensing proton leakage induced by a weak acid using a pH-responsive semiconductor. Mardin-Darby canine kidney (MDCK) epithelial cell sheets cultured on an ion-sensitive field effect transistor's gate insulator were induced into EMT by exposure to the cytokine transforming growth factor-β1 (TGF-β). Our pH perturbation method successfully detected EMT in MDCK sheets at a TGF-β concentration one-tenth of that required for conventional methods. The high sensitivity and selectivity arise from using minimal protons as indicators of TJ barrier disruption. TGF-β-induced EMT detection results using our method align with EMT-related gene and protein expression data. In drug screening with EMT inhibitors, this novel method showed similar trends to conventional ones. The pH perturbation method enables highly sensitive, real-time EMT detection, contributing to elucidating biological phenomena and pharmaceutical development.
Collapse
Affiliation(s)
- Momoko Sakata
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
| | - Yuki Imaizumi
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
| | - Takumi Iwasawa
- Institute of Life Innovation Studies, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Kazunori Kato
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
- Institute of Life Innovation Studies, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo 115-8650, Japan
| | - Tatsuro Goda
- Graduate School of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Biomedical Engineering Center, Toyo University, 48-1 Oka, Asaka, Saitama 351-8510, Japan
| |
Collapse
|
2
|
Kida R, Tsugane M, Suzuki H. Horizontal and vertical microchamber platforms for evaluation of the paracellular permeability of an epithelial cell monolayer. LAB ON A CHIP 2024; 24:572-583. [PMID: 38175144 DOI: 10.1039/d3lc00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Epithelial cells serve as a barrier by tightly adhering to each other and contribute to the homeostasis of living organisms by controlling substance permeation. Therefore, evaluation of the barrier function is important in pharmaceutical development processes. However, the widely used Transwell-based assays require the development of the defect-free epithelial cell monolayer above several tens of mm2, often resulting in low reproducibility and requiring a long incubation time. In addition, the culture surface of cells is far from the bottom of the well plate, making it difficult to observe the cell morphology using an optical microscope. Herein, we propose simple polydimethylsiloxane microfluidic devices for evaluating the barrier function of an epithelial monolayer using a microchamber array. After the formation of the epithelial monolayer over microchambers, the permeation of the marker molecules introduced above resulted in increased fluorescence intensity in microchambers, which was monitored using confocal laser scanning microscopy. We show that using this technique, alteration of the paracellular permeability induced by sodium caprate (C10) and cytochalasin-D, permeation enhancing factors, can be elucidated. Furthermore, by tilting the microchamber device 90 degrees, the vertical cell section and microchambers were imaged in the same focal plane, allowing for live visualization of the passage of fluorescent substances across the cell monolayer. This technique is expected to be useful for investigating the relationship between paracellular permeability and cell morphology, which is unattainable through conventional methods.
Collapse
Affiliation(s)
- Ryuya Kida
- Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, 112-8551, Japan.
| | - Mamiko Tsugane
- Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, 112-8551, Japan.
| | - Hiroaki Suzuki
- Graduate School of Science and Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, 112-8551, Japan.
| |
Collapse
|
3
|
TABATA M, MIYAHARA Y. Control of interface functions in solid-state biosensors for stable detection of molecular recognition. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2024; 100:32-56. [PMID: 38199246 PMCID: PMC10864167 DOI: 10.2183/pjab.100.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/25/2023] [Indexed: 01/12/2024]
Abstract
Significant progress has been achieved in the field of solid-state biosensors over the past 50 years. Various sensing devices with high-density integration and flexible configuration, as well as new applications for clinical diagnosis and healthcare, have been developed using blood, serum, and other body fluids such as sweat, tears, and saliva. A high-density array of ion-sensitive field effect transistors was developed by exploiting the advantages of advanced semiconductor technologies and commercialized in combination with an enzymatic primer extension reaction as a DNA sequencer in 2011. Different types of materials such as inorganic materials, metals, polymers, and biomolecules are mixed together on the surface of the gate while maintaining their own functions; therefore, compatibility among different materials has to be optimized so that the best detection performance of solid-state biosensors, including stability and reliability, is achieved as designed. Solid-state biosensors are suitable for the rapid, cost-effective, and noninvasive identification of biomarkers at various timepoints over the course of a disease.
Collapse
Affiliation(s)
- Miyuki TABATA
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yuji MIYAHARA
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Zhang Y, Chen D, He W, Chen N, Zhou L, Yu L, Yang Y, Yuan Q. Interface-Engineered Field-Effect Transistor Electronic Devices for Biosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306252. [PMID: 38048547 DOI: 10.1002/adma.202306252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/17/2023] [Indexed: 12/06/2023]
Abstract
Promising advances in molecular medicine have promoted the urgent requirement for reliable and sensitive diagnostic tools. Electronic biosensing devices based on field-effect transistors (FETs) exhibit a wide range of benefits, including rapid and label-free detection, high sensitivity, easy operation, and capability of integration, possessing significant potential for application in disease screening and health monitoring. In this perspective, the tremendous efforts and achievements in the development of high-performance FET biosensors in the past decade are summarized, with emphasis on the interface engineering of FET-based electrical platforms for biomolecule identification. First, an overview of engineering strategies for interface modulation and recognition element design is discussed in detail. For a further step, the applications of FET-based electrical devices for in vitro detection and real-time monitoring in biological systems are comprehensively reviewed. Finally, the key opportunities and challenges of FET-based electronic devices in biosensing are discussed. It is anticipated that a comprehensive understanding of interface engineering strategies in FET biosensors will inspire additional techniques for developing highly sensitive, specific, and stable FET biosensors as well as emerging designs for next-generation biosensing electronics.
Collapse
Affiliation(s)
- Yun Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Duo Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Wang He
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Liping Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Lilei Yu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
5
|
Hatano H, Meng F, Sakata M, Matsumoto A, Ishihara K, Miyahara Y, Goda T. Transepithelial delivery of insulin conjugated with phospholipid-mimicking polymers via biomembrane fusion-mediated transcellular pathways. Acta Biomater 2022; 140:674-685. [PMID: 34896268 DOI: 10.1016/j.actbio.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023]
Abstract
Epithelial barriers that seal cell gaps by forming tight junctions to prevent the free permeation of nutrients, electrolytes, and drugs, are essential for maintaining homeostasis in multicellular organisms. The development of nanocarriers that can permeate epithelial tissues without compromising barrier function is key for establishing a safe and efficient drug delivery system (DDS). Previously, we have demonstrated that a water-soluble phospholipid-mimicking random copolymer, poly(2-methacryloyloxyethyl phosphorylcholine30-random-n‑butyl methacrylate70) (PMB30W), enters the cytoplasm of live cells by passive diffusion manners, without damaging the cell membranes. The internalization mechanism was confirmed to be amphiphilicity-induced membrane fusion. In the present study, we demonstrated energy-independent permeation of PMB30W through the model epithelial barriers of Madin-Darby canine kidney (MDCK) cell monolayers in vitro. The polymer penetrated epithelial MDCK monolayers via transcellular pathways without breaching the barrier functions. This was confirmed by our unique assay that can monitor the leakage of the proton as the smallest indicator across the epithelial barriers. Moreover, energy-independent transepithelial permeation was achieved when insulin was chemically conjugated with the phospholipid-mimicking nanocarrier. The bioactivity of insulin as a growth factor was found to be maintained even after translocation. These fundamental findings may aid the establishment of transepithelial DDS with advanced drug efficiency and safety. STATEMENT OF SIGNIFICANCE: A nanocarrier that can freely permeate epithelial tissues without compromising barrier function is key for successful DDS. Existing strategies mainly rely on paracellular transport associated with tight junction breakdown or transcellular transport via transporter recognition-mediated active uptake. These approaches raise concerns about efficiency and safety. In this study, we performed non-endocytic permeation of phospholipid-mimicking polymers through the model epithelial barriers in vitro. The polymer penetrated via transcytotic pathways without breaching the barriers of biomembrane and tight junction. Moreover, transepithelial permeation occurred when insulin was covalently attached to the nanocarrier. The bioactivity of insulin was maintained even after translocation. The biomimetic design of nanocarrier may realize safe and efficient transepithelial DDS.
Collapse
|
6
|
Chemically Induced pH Perturbations for Analyzing Biological Barriers Using Ion-Sensitive Field-Effect Transistors. SENSORS 2021; 21:s21217277. [PMID: 34770587 PMCID: PMC8588202 DOI: 10.3390/s21217277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
Potentiometric pH measurements have long been used for the bioanalysis of biofluids, tissues, and cells. A glass pH electrode and ion-sensitive field-effect transistor (ISFET) can measure the time course of pH changes in a microenvironment as a result of physiological and biological activities. However, the signal interpretation of passive pH sensing is difficult because many biological activities influence the spatiotemporal distribution of pH in the microenvironment. Moreover, time course measurement suffers from stability because of gradual drifts in signaling. To address these issues, an active method of pH sensing was developed for the analysis of the cell barrier in vitro. The microenvironmental pH is temporarily perturbed by introducing a low concentration of weak acid (NH4+) or base (CH3COO−) to cells cultured on the gate insulator of ISFET using a superfusion system. Considering the pH perturbation originates from the semi-permeability of lipid bilayer plasma membranes, induced proton dynamics are used for analyzing the biomembrane barriers against ions and hydrated species following interaction with exogenous reagents. The unique feature of the method is the sensitivity to the formation of transmembrane pores as small as a proton (H+), enabling the analysis of cell–nanomaterial interactions at the molecular level. The new modality of cell analysis using ISFET is expected to be applied to nanomedicine, drug screening, and tissue engineering.
Collapse
|
7
|
Goda T, Hatano H, Yamamoto M, Miyahara Y, Morimoto N. Internalization Mechanisms of Pyridinium Sulfobetaine Polymers Evaluated by Induced Protic Perturbations on Cell Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9977-9984. [PMID: 32787130 DOI: 10.1021/acs.langmuir.0c01816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the interactions of soft nanomatters with cell membranes is particularly important for research into nanocarrier-based drug delivery systems, cell engineering, and subcellular imaging. Most nanoparticles, vesicles, micelles, and polymeric aggregates are internalized into endosomes and, eventually, lysosomes in the cytosol because of energy-dependent endocytic processes. Endocytic uptake substantially limits the access to the cytoplasm where a cargo agent acts. Bypassing the endocytic pathways by direct penetration into plasma membrane barriers would enhance the efficacy of nanomedicines. Some zwitterionic polymer nanoaggregates have been shown to permeate into the cell interior in an energy-independent manner. We have elucidated this phenomenon by observing changes in the biomembrane barrier functions against protons as the smallest indicator and have used these results to further design and develop poly(betaines). In this work, we investigated the translocation mechanisms for a series of zwitterionic poly(methacrylamide) and poly(methacrylate) species bearing a pyridinium propane sulfonate moiety in the monomers. Minor differences in the monomer structures and functional groups were observed to have dramatic effects on the interaction with plasma membranes during translocation. The ability to cross the plasma membrane involves a balance among the betaine dipole-dipole interaction, NH-π interaction, π-π interaction, cation-π interaction, and amide hydrogen bonding. We found that the cell-penetrating polysulfobetaines had limited or no detrimental effect on cell proliferation. Our findings enhance the opportunity to design and synthesize soft nanomatters for cell manipulations by passing across biomembrane partitions.
Collapse
Affiliation(s)
- Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan
- Nano Innovation Institute, Inner Mongolia University for Nationalities, No. 22 HuoLinHe Street, Tongliao, Inner Mongolia 028000, P. R. China
| | - Hiroaki Hatano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Masaya Yamamoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki-aza Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
8
|
Goda T, Miyahara Y, Ishihara K. Phospholipid-mimicking cell-penetrating polymers: principles and applications. J Mater Chem B 2020; 8:7633-7641. [PMID: 32720672 DOI: 10.1039/d0tb01520b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding the interactions of eukaryotic cellular membranes with nanomaterials is required to construct efficient and safe nanomedicines and molecular bioengineering. Intracellular uptake of nanocarriers by active endocytosis limits the intracellular distribution to the endosomal compartment, impairing the intended biological actions of the cargo molecules. Nonendocytic intracellular migration is another route for nanomaterials with cationic or amphiphilic properties to evade the barrier function of the lipid bilayer plasma membranes. Direct transport of nanomaterials into cells is efficient, but this may cause cytotoxic or biocidal effects by temporarily disrupting the biological membrane barrier. We have recently discovered that nonendocytic internalization of synthetic amphipathic polymer-based nanoaggregates that mimic the structure of natural phospholipids can occur without inducing cytotoxicity. Analysis using a proton leakage assay indicated that the polymer enters cells by amphiphilicity-induced membrane fusion rather than by transmembrane pore formation. These noncytotoxic cell-penetrating polymers may find applications in drug delivery systems, gene transfection, cell therapies, and biomolecular engineering.
Collapse
Affiliation(s)
- Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, 2100 Kujirai, Kawagoe, Saitama 350-8585, Japan.
| | | | | |
Collapse
|
9
|
Hatano H, Goda T, Matsumoto A, Miyahara Y. Induced Proton Dynamics on Semiconductor Surfaces for Sensing Tight Junction Formation Enhanced by an Extracellular Matrix and Drug. ACS Sens 2019; 4:3195-3202. [PMID: 31763825 DOI: 10.1021/acssensors.9b01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In the fields of tissue engineering and drug discovery, confirming the formation and maturation of epithelial cell tight junctions (TJs), which are necessary for blocking pathogenic invasion and absorption of nutrients and ions, at a high spatiotemporal resolution is essential. We previously developed a system of monitoring pH perturbation induced by weak acid exposure to cells cultured on an ion-sensitive field-effect transistor that enables a sensitive and specific detection of biomembrane injuries and TJ breakdowns caused by external stimuli such as nanomaterials and cytotoxins. In this study, we monitor time-lapse changes in the paracellular diffusion of growing epithelial cell monolayers using the pH perturbation assay as well as conventional permeability and trans-epithelial electrical resistance assays. The effects of the extracellular matrix and a TJ potentiator (KN-93) on epithelial TJ formation are evaluated. TJ formations were promoted on the substrate coated with Matrigel more than on the one coated with poly(l-lysine). KN-93 accelerated TJ formations in a dose-dependent manner. The pH perturbation assay denoted a longer incubation time for the completion of TJ formation compared with the conventional assays under the same conditions. Importantly, the pH perturbation assay is able to rigorously evaluate TJ formation, as the assay uses protons as the smallest indicator for detecting paracellular gaps, and the pH perturbation is specific to TJ alterations. These features for in vitro TJ evaluation using proton dynamics are advantageous for applications in tissue engineering and drug development.
Collapse
Affiliation(s)
- Hiroaki Hatano
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Tatsuro Goda
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Nano Innovation Institute, Inner Mongolia University for Nationalities, No. 22 Huoline Street, Tongliao, Inner Mongolia 028000, P. R. China
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan
| |
Collapse
|
10
|
Goda T, Imaizumi Y, Hatano H, Matsumoto A, Ishihara K, Miyahara Y. Translocation Mechanisms of Cell-Penetrating Polymers Identified by Induced Proton Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8167-8173. [PMID: 31094202 DOI: 10.1021/acs.langmuir.9b00856] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Unlike the majority of nanomaterials designed for cellular uptake via endocytic pathways, some of the functional nanoparticles and nanospheres directly enter the cytoplasm without overt biomembrane injuries. Previously, we have shown that a water-soluble nanoaggregate composed of amphiphilic random copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA), poly(MPC- random-BMA) (PMB), passes live cell membranes in an endocytosis-free manner. Yet, details in its translocation mechanism remain elusive due to the lack of proper analytical methods. To understand this phenomenon experimentally, we elaborated the original pH perturbation assay that is extremely sensitive to the pore formation on cell membranes. The ultimate sensitivity originates from the detection of the smallest indicator H+ (H3O+) passed through the molecularly sized transmembrane pores upon challenge by exogenous reagents. We revealed that water-soluble PMB at the 30 mol % MPC unit (i.e., PMB30W) penetrated into the cytosol of model mammalian cells without any proton leaks, in contrast to conventional cell-penetrating peptides, TAT and R8 as well as the surfactant, Triton X-100. While exposure of PMB30W permeabilized cytoplasmic lactate dehydrogenase out of the cells, indicating the alteration of cell membrane polarity by partitioning of amphiphilic PMB30W into the lipid bilayers. Nevertheless, the biomembrane alterations by PMB30W did not exhibit cytotoxicity. In summary, elucidating translocation mechanisms by proton dynamics will guide the design of nanomaterials with controlled permeabilization to cell membranes for bioengineering applications.
Collapse
Affiliation(s)
- Tatsuro Goda
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
- Nano Innovation Institute , Inner Mongolia University for Nationalities , No. 22 HuoLinHe Street , Tongliao , Inner Mongolia 028000 , P. R. China
| | - Yuki Imaizumi
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| | - Hiroaki Hatano
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC) , 705-1 Shimoimaizumi , Ebina , Kanagawa 243-0435 , Japan
| | | | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University (TMDU) , 2-3-10 Kanda-Surugadai , Chiyoda, Tokyo 101-0062 , Japan
| |
Collapse
|