1
|
Rane A, Tate S, Sumey JL, Zhong Q, Zong H, Purow B, Caliari SR, Swami NS. Open-Top Patterned Hydrogel-Laden 3D Glioma Cell Cultures for Creation of Dynamic Chemotactic Gradients to Direct Cell Migration. ACS Biomater Sci Eng 2024; 10:3470-3477. [PMID: 38652035 PMCID: PMC11094679 DOI: 10.1021/acsbiomaterials.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Steven Tate
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Jenna L. Sumey
- Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Qing Zhong
- Neurology,
School of Medicine, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Hui Zong
- Microbiology,
Immunology & Cancer Biology, School of Medicine, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Benjamin Purow
- Neurology,
School of Medicine, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Steven R. Caliari
- Chemical
Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
- Biomedical
Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Nathan S. Swami
- Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Zhang Q, Lin L, Yi X, Xie T, Xing G, Li Y, Wang X, Lin JM. Microfluidic Sampling of Undissolved Components from Subcellular Regions of Living Single Cells for Mass Spectrometry Analysis. Anal Chem 2023; 95:18082-18090. [PMID: 38032315 DOI: 10.1021/acs.analchem.3c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Precise sampling of undissolved chemical components from subcellular regions of living single cells is a prerequisite for their in-depth analysis, which could promote understanding of subtle early stage physiological or pathological processes. Here we report a microfluidic method to extract undissolved components from subcellular regions for MS analysis. The target single cell was isolated by the microchamber beneath the microfluidic probe and washed by the injected biocompatible isotonic glucose aqueous solution (IGAS). Then, the sampling solvent was injected to extract undissolved components from the expected subcellular region of the living single cell, where the position and size of the sampling region could be controlled. The components immobilized by undissolved cellular structures were proven to be successfully extracted. Since unextracted subcellular regions were protected by IGAS, the single cell could survive after a tiny part was extracted, providing the possibility of repetitive sampling of the same living cell. Phospholipids extracted from the subcellular regions were successfully identified. The results demonstrated the feasibility of our method for subcellular sampling and analysis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xizhen Yi
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Tianze Xie
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Gaowa Xing
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Yuxuan Li
- Department of Chemistry, Tshinghua University, Beijing 100084, China
| | - Xiaorui Wang
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Zhang Q, Xie T, Yi X, Xing G, Feng S, Chen S, Li Y, Lin JM. Microfluidic Aqueous Two-Phase Focusing of Chemical Species for In Situ Subcellular Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45640-45650. [PMID: 37733946 DOI: 10.1021/acsami.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Confinement of chemical species in a controllable micrometer-level (several to a dozen micrometers) space in an aqueous environment is essential for precisely manipulating chemical events in subcellular regions. However, rapid diffusion and hard-to-control micrometer-level fluids make it a tough challenge. Here, a versatile open microfluidic method based on an aqueous two-phase system (ATPS) is developed to restrict species inside an open space with micron-level width. Unequal standard chemical potentials of the chemical species in two phases and space-time correspondence in the microfluidic system prevent outward diffusion across the phase interface, retaining the target species inside its preferred phase flow and creating a sharp boundary with a dramatic concentration change. Then, the chemical flow (the preferred phase with target chemical species) is precisely manipulated by a microfluidic probe, which can be compressed to a micron-level width and aimed at an arbitrary position of the sample. As a demonstration of the feasibility and versatility of the strategy, chemical flow is successfully applied to subcellular regions of various kinds of living single cells. Subcellular regions are successfully labeled (cytomembrane and mitochondria) and damaged. Healing-regeneration behaviors of living single cells are triggered by subcellular damage and analyzed. The method is relatively general regarding the species of chemicals and biosamples, which could promote deeper cell research.
Collapse
Affiliation(s)
- Qiang Zhang
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianze Xie
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xizhen Yi
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Gaowa Xing
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Feng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shulang Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuxuan Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Hou Y, Yao H, Lin JM. Recent advancements in single-cell metabolic analysis for pharmacological research. J Pharm Anal 2023; 13:1102-1116. [PMID: 38024859 PMCID: PMC10658044 DOI: 10.1016/j.jpha.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 12/01/2023] Open
Abstract
Cellular heterogeneity is crucial for understanding tissue biology and disease pathophysiology. Pharmacological research is being advanced by single-cell metabolic analysis, which offers a technique to identify variations in RNA, proteins, metabolites, and drug molecules in cells. In this review, the recent advancement of single-cell metabolic analysis techniques and their applications in drug metabolism and drug response are summarized. High-precision and controlled single-cell isolation and manipulation are provided by microfluidics-based methods, such as droplet microfluidics, microchamber, open microfluidic probe, and digital microfluidics. They are used in tandem with variety of detection techniques, including optical imaging, Raman spectroscopy, electrochemical detection, RNA sequencing, and mass spectrometry, to evaluate single-cell metabolic changes in response to drug administration. The advantages and disadvantages of different techniques are discussed along with the challenges and future directions for single-cell analysis. These techniques are employed in pharmaceutical analysis for studying drug response and resistance pathway, therapeutic targets discovery, and in vitro disease model evaluation.
Collapse
Affiliation(s)
- Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongren Yao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Recent advances in nanowire sensor assembly using laminar flow in open space. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Jiang Z, Shi H, Tang X, Qin J. Recent advances in droplet microfluidics for single-cell analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Xing G, Ai J, Wang N, Pu Q. Recent progress of smartphone-assisted microfluidic sensors for point of care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Yao L, Zhao MM, Luo QW, Zhang YC, Liu TT, Yang Z, Liao M, Tu P, Zeng KW. Carbon Quantum Dots-Based Nanozyme from Coffee Induces Cancer Cell Ferroptosis to Activate Antitumor Immunity. ACS NANO 2022; 16:9228-9239. [PMID: 35622408 DOI: 10.1021/acsnano.2c01619] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Carbon quantum dots (CQDs) offer huge potential due to their enzymatic properties as compared to natural enzymes. Thus, discovery of CQDs-based nanozymes with low toxicity from natural resources, especially daily food, implies a promising direction for exploring treatment strategies for human diseases. Here, we report a CQDs-based biocompatible nanozyme prepared from chlorogenic acid (ChA), a major bioactive natural product from coffee. We found that ChA CQDs exhibited obvious GSH oxidase-like activities and subsequently promoted cancer cell ferroptosis by perturbation of GPX4-catalyzed lipid repair systems. In vivo, ChA CQDs dramatically suppressed the tumor growth in HepG2-tumor-bearing mice with negligible side toxicity. Particularly, in hepatoma H22-bearing mice, ChA CQDs recruited massive tumor-infiltrating immune cells including T cells, NK cells, and macrophages, thereby converting "cold" to "hot" tumors for activating systemic antitumor immune responses. Taken together, our study suggests that natural product-derived CQDs from coffee can serve as biologically safe nanozymes for anticancer therapeutics and may aid the development of nanotechnology-based immunotherapeutic.
Collapse
Affiliation(s)
- Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Mei-Mei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qian-Wei Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yi-Chi Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ting-Ting Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhuo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Min Liao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Yang Z, Zhang Z, Zhao Y, Ye Q, Li X, Meng L, Long J, Zhang S, Zhang L. Organelle Interaction and Drug Discovery: Towards Correlative Nanoscopy and Molecular Dynamics Simulation. Front Pharmacol 2022; 13:935898. [PMID: 35795548 PMCID: PMC9251060 DOI: 10.3389/fphar.2022.935898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
The inter-organelle interactions, including the cytomembrane, endoplasmic reticulum, mitochondrion, lysosome, dictyosome, and nucleus, play the important roles in maintaining the normal function and homeostasis of cells. Organelle dysfunction can lead to a range of diseases (e.g., Alzheimer's disease (AD), Parkinson's disease (PD), and cancer), and provide a new perspective for drug discovery. With the development of imaging techniques and functional fluorescent probes, a variety of algorithms and strategies have been developed for the ever-improving estimation of subcellular structures, organelle interaction, and organelle-related drug discovery with accounting for the dynamic structures of organelles, such as the nanoscopy technology and molecular dynamics (MD) simulations. Accordingly, this work summarizes a series of state-of-the-art examples of the recent progress in this rapidly changing field and uncovering the drug screening based on the structures and interactions of organelles. Finally, we propose the future outlook for exciting applications of organelle-related drug discovery, with the cooperation of nanoscopy and MD simulations.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Zichen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Qiushi Ye
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Lingjie Meng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
- Instrumental Analysis Center, Xi’an Jiaotong University, Xi’an, China
| | - Jiangang Long
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Xie T, Zhang Q, Zhang W, Feng S, Lin JM. Inkjet-Patterned Microdroplets as Individual Microenvironments for Adherent Single Cell Culture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107992. [PMID: 35362237 DOI: 10.1002/smll.202107992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Adhesion of single cells is the foundation of manifold cellular behaviors and life processes. However, investigating the function of a specific cell is still challenging due to deficiency of adhesion or interference from surrounding cells. Herein, an open microfluidic system is reported for culturing adherent single cells, implemented by a micrometer-scale droplet matrix on an inkjet-printed polylysine template. The target cells are isolated from any cell from other droplets, and their adhesion strength is determined to be comparable to conventional petri dishes via an in-situ investigation with a microfluidic extractor. On this proposed platform, isolated single cells are observed to display an entirely distinct spreading behavior featuring total absence of elongation, indicating drastic cell behavior change from their "singleness." This system has high versatility and compatibility for various assaying methods, assuring a promising potential in detailed single cell behavior and cell heterogeneity studies.
Collapse
Affiliation(s)
- Tianze Xie
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Weifei Zhang
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, N 3rd Ring Road E 18, Beijing, 100029, P. R. China
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
11
|
Zhang Q, Feng S, Lin L, Mao S, Lin JM. Emerging open microfluidics for cell manipulation. Chem Soc Rev 2021; 50:5333-5348. [PMID: 33972984 DOI: 10.1039/d0cs01516d] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell manipulation is the foundation of biochemical studies, which demands user-friendly, multifunctional and precise tools. Based on flow confinement principles, open microfluidics can control the movement of microscale liquid in open space. Every position of the circuit is accessible to external instruments, making it possible to perform precise treatment and analysis of cells at arbitrary target positions especially at the single-cell/sub-cell level. Benefiting from its unique superiority, various manipulations including patterned cell culture, 3D tissue modelling, localized chemical stimulation, online cellular factor analysis, single cell sampling, partial cell treatment, and subcellular free radical attack can be easily realized. In this tutorial review, we summarize two basic ideas to design open microfluidics: open microfluidic networks and probes. The principles of mainstream open microfluidic methods are explained, and their recent important applications are introduced. Challenges and developing trends of open microfluidics are also discussed.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Shuo Feng
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Sifeng Mao
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
13
|
Zhang Q, Feng S, Li W, Xie T, Zhang W, Lin J. In Situ Stable Generation of Reactive Intermediates by Open Microfluidic Probe for Subcellular Free Radical Attack and Membrane Labeling. Angew Chem Int Ed Engl 2021; 60:8483-8487. [DOI: 10.1002/anie.202016171] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/07/2021] [Indexed: 01/19/2023]
Affiliation(s)
- Qiang Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Shuo Feng
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Weiwei Li
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Tianze Xie
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Wanling Zhang
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| | - Jin‐Ming Lin
- Department of Chemistry Beijing Key Laboratory of Microanalytical Methods and Instrumentation MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology Tsinghua University Beijing 100084 China
| |
Collapse
|
14
|
Chen P, Li S, Guo Y, Zeng X, Liu BF. A review on microfluidics manipulation of the extracellular chemical microenvironment and its emerging application to cell analysis. Anal Chim Acta 2020; 1125:94-113. [PMID: 32674786 DOI: 10.1016/j.aca.2020.05.065] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022]
Abstract
Spatiotemporal manipulation of extracellular chemical environments with simultaneous monitoring of cellular responses plays an essential role in exploring fundamental biological processes and expands our understanding of underlying mechanisms. Despite the rapid progress and promising successes in manipulation strategies, many challenges remain due to the small size of cells and the rapid diffusion of chemical molecules. Fortunately, emerging microfluidic technology has become a powerful approach for precisely controlling the extracellular chemical microenvironment, which benefits from its integration capacity, automation, and high-throughput capability, as well as its high resolution down to submicron. Here, we summarize recent advances in microfluidics manipulation of the extracellular chemical microenvironment, including the following aspects: i) Spatial manipulation of chemical microenvironments realized by convection flow-, diffusion-, and droplet-based microfluidics, and surface chemical modification; ii) Temporal manipulation of chemical microenvironments enabled by flow switching/shifting, moving/flowing cells across laminar flows, integrated microvalves/pumps, and droplet manipulation; iii) Spatiotemporal manipulation of chemical microenvironments implemented by a coupling strategy and open-space microfluidics; and iv) High-throughput manipulation of chemical microenvironments. Finally, we briefly present typical applications of the above-mentioned technical advances in cell-based analyses including cell migration, cell signaling, cell differentiation, multicellular analysis, and drug screening. We further discuss the future improvement of microfluidics manipulation of extracellular chemical microenvironments to fulfill the needs of biological and biomedical research and applications.
Collapse
Affiliation(s)
- Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yiran Guo
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xuemei Zeng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Dou J, Mao S, Li H, Lin JM. Combination Stiffness Gradient with Chemical Stimulation Directs Glioma Cell Migration on a Microfluidic Chip. Anal Chem 2019; 92:892-898. [DOI: 10.1021/acs.analchem.9b03681] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinxin Dou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sifeng Mao
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haifang Li
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Yue WQ, Tan Z, Li XP, Liu FF, Wang C. Micro/nanofluidic technologies for efficient isolation and detection of circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Chen P, Chen D, Li S, Ou X, Liu BF. Microfluidics towards single cell resolution protein analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Wu J, Lin JM. Microfluidic Technology for Single-Cell Capture and Isolation. MICROFLUIDICS FOR SINGLE-CELL ANALYSIS 2019. [DOI: 10.1007/978-981-32-9729-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|