1
|
Imamura H, Honda S. Cue to Acid-Induced Long-Range Conformational Changes in an Antibody Preceding Aggregation: The Structural Origins of the Subpeaks in Kratky Plots of Small-Angle X-ray Scattering. Int J Mol Sci 2023; 24:12042. [PMID: 37569415 PMCID: PMC10418478 DOI: 10.3390/ijms241512042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Antibody aggregation, followed by acid denaturation and neutralization of pH, is one of the reasons why the production of therapeutic monoclonal antibodies (mAbs) is expensive. Determining the structural details of acid-denatured antibodies is important for understanding their aggregation mechanism and for antibody engineering. Recent research has shown that monoclonal antibodies of human/humanized immunoglobulin G1 (IgG1) become smaller globules at pH 2 compared to their native structure at pH 7. This acid-denatured species is unstable at pH 7 and prone to aggregation by neutralization of pH. Small-angle X-ray scattering (SAXS) data have revealed an acid-induced reduction in the subpeaks in Kratky plot, indicating conformational changes that can lead to aggregation. The subpeaks are well resolved at pH > 3 but less pronounced at pH ≤ 2. One of the weakened subpeaks indicates loosely organized inter-region (Fab-Fab and Fab-Fc) correlations due to acid denaturation. However, the structural origin of the other subpeak (called q3 peak in this study) has not been established because its q region could represent the various inter-region, inter-domain, and intra-domain correlations in IgG1. In this study, we aimed to untangle the effects of domain-domain correlations on Kratky's q3 peak based on the computed SAXS of the crystal structure of IgG1. The q3 peak appeared in the static structure and was more prominent in the Fc region than in the Fab or isolated domains. Further brute-force analysis indicated that longer domain-domain correlations, including the inter-region, also positively contribute to Kratky's q3 peak. Thus, the distortion of the Fc region and a longer inter-region correlation initiate acid denaturation and aggregation.
Collapse
Affiliation(s)
- Hiroshi Imamura
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama 526-0829, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
2
|
Warsi MS, Habib S, Talha M, Khan S, Singh P, Mir AR, Abidi M, Ali A, Moinuddin. 4-Chloro-1,2-phenylenediamine induced structural perturbation and genotoxic aggregation in human serum albumin. Front Chem 2022; 10:1016354. [PMID: 36199663 PMCID: PMC9527296 DOI: 10.3389/fchem.2022.1016354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
4-Chloro-1,2-phenylenediamine (4-Cl-OPD) is a halogenated aromatic diamine used as a precursor in permanent hair color production. Despite its well-documented mutagenic and carcinogenic effects in various in vitro and in vivo models, its role in fibrillar aggregate formation and their genotoxic effect in therapeutic proteins has received less attention. The significance of human serum albumin (HSA) arises from its involvement in bio-regulatory and transport processes. HSA misfolding and aggregation are responsible for some of the most frequent neurodegenerative disorders. We used various complementary approaches to track the formation of amyloid fibrils and their genotoxic effect. Molecular dynamics study demonstrated the complex stability. The impact of 4-Cl-OPD on the structural dynamics of HSA was confirmed by Raman spectroscopy, X-ray diffraction, HPLC and SDS-PAGE. Fibrilllar aggregates were investigated using Congo red assay, DLS, and SEM. The genotoxic nature of 4-Cl-OPD was confirmed using plasmid nicking assay and DAPI staining, which revealed DNA damage and cell apoptosis. 4-Cl-OPD provides a model system for studying fibrillar aggregation and their genotoxic potential in the current investigation. Future studies should investigate the inhibition of the aggregation/fibrillation process, which may yield valuable clinical insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
3
|
Warsi MS, Habib S, Talha M, Khan S, Singh P, Mir AR, Abidi M, Ali A, Moinuddin. 4-Chloro-1,2-phenylenediamine induced structural perturbation and genotoxic aggregation in human serum albumin. Front Chem 2022; 10:1016354. [PMID: 36199663 PMCID: PMC9527296 DOI: 10.3389/fchem.2022.1016354,] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/05/2022] [Indexed: 10/08/2024] Open
Abstract
4-Chloro-1,2-phenylenediamine (4-Cl-OPD) is a halogenated aromatic diamine used as a precursor in permanent hair color production. Despite its well-documented mutagenic and carcinogenic effects in various in vitro and in vivo models, its role in fibrillar aggregate formation and their genotoxic effect in therapeutic proteins has received less attention. The significance of human serum albumin (HSA) arises from its involvement in bio-regulatory and transport processes. HSA misfolding and aggregation are responsible for some of the most frequent neurodegenerative disorders. We used various complementary approaches to track the formation of amyloid fibrils and their genotoxic effect. Molecular dynamics study demonstrated the complex stability. The impact of 4-Cl-OPD on the structural dynamics of HSA was confirmed by Raman spectroscopy, X-ray diffraction, HPLC and SDS-PAGE. Fibrilllar aggregates were investigated using Congo red assay, DLS, and SEM. The genotoxic nature of 4-Cl-OPD was confirmed using plasmid nicking assay and DAPI staining, which revealed DNA damage and cell apoptosis. 4-Cl-OPD provides a model system for studying fibrillar aggregation and their genotoxic potential in the current investigation. Future studies should investigate the inhibition of the aggregation/fibrillation process, which may yield valuable clinical insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
4
|
Nakayama T, Kobayashi K, Kameda T, Hase M, Hirano A. Protein's Protein Corona: Nanoscale Size Evolution of Human Immunoglobulin G Aggregates Induced by Serum Albumin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32937-32947. [PMID: 35822632 DOI: 10.1021/acsami.2c08271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoparticles are readily coated by proteins in biological systems. The protein layers on the nanoparticles, which are called the protein corona, influence the biological impacts of the nanoparticles, including internalization into cells and cytotoxicity. This study expands the scope of the nanoparticle's protein corona for exogenous artificial nanoparticles to that for exogenous proteinaceous nanoparticles. Specifically, this study addresses the formation of protein coronas on nanoscale human antibody aggregates with a radius of approximately 20-40 nm, where the antibody aggregates were induced by a pH shift from low to neutral pH. The size of the human immunoglobulin G (hIgG) aggregates grew to approximately 25 times the original size in the presence of human serum albumin (HSA). This size evolution was ascribed to the association of the hIgG aggregates, which was triggered by the formation of the hIgG aggregate's protein corona, i.e., protein's protein corona, consisting of the adsorbed HSA molecules. Because hIgG aggregate association was significantly reduced by the addition of 30-150 mM NaCl, it was attributed to electrostatic attraction, which was supported by molecular dynamics (MD) simulations. Currently, the use of antibodies as biopharmaceuticals is concerning because of undesired immune responses caused by antibody aggregates that are typically generated by a pH shift during the antibody purification process. The present findings suggest that nanoscale antibody aggregates form protein coronas induced by HSA and the resulting nanoscale antibody-HSA complexes are stable in blood containing approximately 150 mM salt ions, at least in terms of the size evolution. Mechanistic insights into protein corona formation on nanoscale antibody aggregates are useful for understanding the unintentional biological impacts of antibody drugs.
Collapse
Affiliation(s)
- Tomohito Nakayama
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Kaito Kobayashi
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto, Tokyo135-0064, Japan
| | - Muneaki Hase
- Department of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Atsushi Hirano
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
5
|
Oki S, Nishinami S, Nakauchi Y, Ogura T, Shiraki K. Arginine and its Derivatives Suppress the Opalescence of an Antibody Solution. J Pharm Sci 2021; 111:1126-1132. [PMID: 34843741 DOI: 10.1016/j.xphs.2021.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/28/2022]
Abstract
Opalescence is a problem concerned with the stability of an antibody solution. It occurs when a high concentration of a protein is present. Arginine (Arg) is a versatile aggregation suppressor of proteins, which is among the candidates that suppress opalescence in antibody solutions. Here, we investigated the effect of various types of small molecular additives on opalescence to reveal the mechanism of Arg in preventing opalescence in antibody solution. As expected, Arg suppressed the opalescence of the immunoglobulin G (IgG) solution. Arg also concentration dependently inhibited the formation of microstructures in IgG molecules. Interestingly, the intrinsic fluorescence spectra of highly concentrated IgG solutions differed from those having low concentrations, even though IgG retained a distinct tertiary structure. Arginine ethylester was more effective in suppressing the opalescence of IgG solutions than Arg, whereas lysine and γ-guanidinobutyric acid were less effective. These results indicated that positively charged groups of both α-amine and guanidinium actively influence Arg as an additive for suppressing opalescence. Diols, which are the suppressors of the liquid-liquid phase separation of proteins were also effective in suppressing the opalescence. These results therefore provide insight into the control of opalescence of antibody solutions at high concentrations using solution additives.
Collapse
Affiliation(s)
- Shogo Oki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Suguru Nishinami
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yoshitaka Nakauchi
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
6
|
Senga Y, Doi M, Onitsuka M, Honda S. Live-cell imaging to analyze intracellular aggregation of recombinant IgG in CHO cells. Cell Chem Biol 2021; 29:120-132.e4. [PMID: 34739851 DOI: 10.1016/j.chembiol.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/05/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022]
Abstract
Recombinant immunoglobulin G (IgG) aggregates are formed during their production. However, the process underlying intracellular/extracellular aggregation in cell culture conditions is not well understood, and no effective method exists to assess IgG aggregates. Here, we establish an approach to detect intracellular aggregates using AF.2A1, a small artificial protein that binds to non-native IgG conformers and aggregates. Fluorescent-labeled AF.2A1 is prepared via conjugation and transfected into antibody-producing Chinese hamster ovary (CHO) cells. Micrographic images show intracellular IgG aggregates in CHO cells. The relative amount of intracellular aggregates (versus total intracellular IgG) differed depending on the type of additives used during cell culture. Interestingly, the relative amount of intracellular aggregates moderately correlates with that of in vitro extracellular IgG aggregates, suggesting they are secreted. This method will allow the investigation of antibody aggregation in cells, and may guide the production of therapeutic antibodies with high yield/quality.
Collapse
Affiliation(s)
- Yukako Senga
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Masayoshi Onitsuka
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima, Tokushima, Tokushima 770-8513, Japan
| | - Shinya Honda
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| |
Collapse
|
7
|
Nano-Microscopy of Therapeutic Antibody Aggregates in Solution. Methods Mol Biol 2021. [PMID: 34478141 DOI: 10.1007/978-1-0716-1450-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Scanning electron-assisted dielectric microscopy (SE-ADM) is a new microscope technology developed to observe the fine structure of biological samples in aqueous solution. One main advantage of SE-ADM is that it does not require sample pretreatment, including dehydration, drying, and staining, which is indispensable in conventional scanning electron microscopy (SEM) and can cause sample deformation. In addition, the sample is not directly irradiated with an electron beam in SE-ADM, further avoiding damage. The resolution of SE-ADM is higher than that of an optical microscope, which is typically used for observing biological samples in a solution, allowing for the observation of the detailed structure of samples. Considering these advantages, we applied SE-ADM to observe aggregates of therapeutic immunoglobulin G (IgG) of various sizes and shapes in an aqueous solution. In this chapter, we outline the step-by-step procedure for observing aggregates of monoclonal antibodies using SE-ADM and the subsequent analysis of the particle distribution and calculation of the fractal dimension using SE-ADM image data. The proposed method for particle analysis is highly reliable with respect to size measurement and can determine the diameter of a sample with an accuracy of ±20%, a precision of ±10%, and a lower limit of quantification of ≤50 nm. Further, by calculating the fractal dimension of the image, it is possible to classify the shape of the aggregates and determine the mechanism of aggregation.
Collapse
|
8
|
Tokunaga Y, Takeuchi K. Role of NMR in High Ordered Structure Characterization of Monoclonal Antibodies. Int J Mol Sci 2020; 22:E46. [PMID: 33375207 PMCID: PMC7793058 DOI: 10.3390/ijms22010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Obtaining high ordered structure (HOS) information is of importance to guarantee the efficacy and safety of monoclonal antibodies (mAbs) in clinical application. Assessment of HOS should ideally be performed in a non-invasive manner under their formulated storage conditions, as any perturbation can introduce unexpected detritions. However, most of the currently available techniques only indirectly report HOS of mAbs and/or require a certain condition to conduct the analyses. Besides, the flexible multidomain architecture of mAbs has hampered atomic-resolution structural analyses using X-ray crystallography and cryo-electron microscopy. In contrast, the ability of nuclear magnetic resonance (NMR) spectroscopy to structurally analyze biomolecules in various conditions in a non-invasive and quantitative manner is suitable to meet the needs. However, the application of NMR to mAbs is not straightforward due to the high molecular weight of the system. In this review, we will discuss how NMR techniques have been applied to HOS analysis of mAbs, along with the recent advances of the novel 15N direct detection NMR strategy that allows for obtaining the structural fingerprint of mAbs at lower temperatures under multiple formulation conditions. The potential application of these NMR strategies will benefit next-generation mAbs, such as antibody-drug conjugates and bispecific antibodies.
Collapse
Affiliation(s)
- Yuji Tokunaga
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan;
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tokyo 135-0064, Japan
| |
Collapse
|
9
|
Fukuda E, Mori M, Shiku H, Miyahara Y, Kawamura Y, Ogawa K, Ogura T, Goshima N. Development of INSOL-tag for proteome-wide protein handling and its application in protein array analysis. Genes Cells 2019; 25:41-53. [PMID: 31733161 DOI: 10.1111/gtc.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
Proteomic analysis requires protein tags that enable high-throughput handling; however, versatile tags that can be used in in vitro expression systems are currently lacking. In this study, we developed an insoluble protein tag, INSOL-tag, derived from human transcription factor MafG. The INSOL-tagged target protein is expressed in a eukaryotic in vitro expression system and recovered as a pellet following centrifugation at 19,000 × g for 20 min. Comparisons of the target protein recovery rates of GST-tag and INSOL-tag using 111 cytoplasmic proteins revealed a fourfold increase in the yield of INSOL-tagged proteins. Using 267 cancer antigens purified with INSOL-tag, we subsequently developed an INSOL-CTA array method, for profiling autoantibodies in sera of cancer patients. The detection limit of the array was approximately 11.1 pg IgG, and the correlation with ELISA was high (R2 = .993, .955). Moreover, when autoantibody profiling of digestive cancer patient sera was performed, antigen spreading was observed. These data suggest that INSOL-tag is a versatile tag that can insolubilize a wide range of target proteins. It is therefore expected to become a powerful tool in comprehensive protein preparation for protein arrays, antibody production, and mass spectrometry.
Collapse
Affiliation(s)
- Eriko Fukuda
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masatoshi Mori
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Koji Ogawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| |
Collapse
|