1
|
Chao S, Valsecchi C, Sun J, Shao H, Li X, Tang C, Fan M. Highly Sensitive Surface-Enhanced Raman Scattering Detection of Hydroxyl Radicals in Water Microdroplets Using Phthalhydrazide/Ag Nanoparticles Nanosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16497-16506. [PMID: 39114886 DOI: 10.1021/acs.est.4c03081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The spontaneous generation of hydrogen peroxide (H2O2) within atmospheric microdroplets, such as raindrops and aerosols, plays a crucial role in various environmental processes including pollutant degradation and oxidative stress. However, quantifying hydroxyl radicals (•OH), essential for H2O2 formation, remains challenging due to their short lifespan and low concentration. This study addresses this gap by presenting a highly sensitive and selective surface-enhanced Raman scattering (SERS) nanosensor specifically designed for quantifying •OH within water microdroplets. Utilizing a phthalhydrazide (Phth) probe, the SERS technique enables rapid, interference-free detection of •OH at nanomolar concentrations. It achieves a linear detection range from 2 nM to 2 μM and a limit of detection as low as 0.34 nM. Importantly, the SERS sensor demonstrates robustness and accuracy within water microdroplets, paving the way for comprehensive mechanistic studies of H2O2 generation in the atmosphere. This innovative approach not only offers a powerful tool for environmental research but also holds potential for advancing our understanding of atmospheric H2O2 formation and its impact on air quality and pollutant degradation.
Collapse
Affiliation(s)
- Shengmao Chao
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Chiara Valsecchi
- Federal University of Pampa, Campus Alegrete, 97542-160 Alegrete, Rio Grande do Sul, Brazil
| | - Ji Sun
- Department of Student Affairs, Henan University of Technology, 450001 Zhengzhou, China
| | - Hong Shao
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Xinxia Li
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Changyu Tang
- Chengdu Development Center of Science and Technology, China Academy of Engineering Physics, Chengdu 610200, China
| | - Meikun Fan
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Geng P, Lv J, Zhao L, Wang Y. Online chemiluminescence determination of the hydroxyl radical using coumarin as a probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:5233-5238. [PMID: 37782128 DOI: 10.1039/d3ay01476b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydroxyl radical (˙OH) is one of the strongest oxidizing species, which can react with a variety of organic and inorganic chemicals. Although ˙OH is widely used for degradation of environmental pollutants, detection of ˙OH remains a major challenge due to its high reactivity and short lifetime, especially online detection. In this study, a novel method for online detection of ˙OH by flow oxidization chemiluminescence (F-OCL) using coumarin as a probe was established. The concentrations of ˙OH determined by this new method were consistent with those determined by HPLC analysis. Because the new method has a short response speed, it was successfully used to quantify the dynamic change of ˙OH in the TiO2 photocatalytic process and Fenton reaction in real time. Furthermore, a combination of two chemiluminescence systems was developed to track the dynamics of ˙OH and hydrogen peroxide (H2O2) in homogeneous or heterogeneous Fenton reactions occurring in soil slurry. The proposed method and strategy have good application potential in online ROS monitoring of both natural and engineered systems.
Collapse
Affiliation(s)
- Pengyu Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Guo Q, Feng Y, Song H, Sun M, Zhan Z, Lv Y. New Perylene-Based Chemiluminescent Polymer Nanoparticles for Highly Selective Detection of the Superoxide Anion In Vivo. Anal Chem 2023; 95:15102-15109. [PMID: 37779257 DOI: 10.1021/acs.analchem.3c03233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The superoxide anion (O2•-) is one of the primary reactive oxygen species in biological systems. Developing a determination system for O2•- in vivo has attracted much attention thanks to its complex biological function. Herein, we proposed a new perylene-based chemiluminescence (CL) probe, the SH-PDI polymer, which was capable of generating strong CL signals with O2•- in comparison with other ROS. The CL mechanism involved was proposed to be a kind of oxidation reaction induced by the breakage of the S-S and S-H bonds into sulfoxide bonds by O2•-. Subsequently, a nanoprecipitation method was introduced, using cumene-terminated poly(styrene-co-maleic anhydride) as the amphiphilic agent, to obtain water-soluble nanoparticles, SPPS NPs, which exhibited not only stronger CL intensity but also higher selectivity toward O2•- than the SH-PDI polymer. Moreover, the CL wavelength of the SPPS-O2•- system was found to be located at 580 and 710 nm, which was conducive to CL imaging. By virtue of these advantages, SPPS NPs were utilized to evaluate the O2•- level in vitro in the range of 0.25-60 μM at pH 7.0, with a detection limit of 8.2 × 10-8 M (S/N = 3). Moreover, SPPS NPs were also capable of imaging O2•- in an LPS-induced acute inflammation mice model and drug-induced acute kidney injury (AKI).
Collapse
Affiliation(s)
- Qi Guo
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zixuan Zhan
- Core Facilities of West China Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
4
|
Teng X, Ling Q, Liu T, Li L, Lu C. Nanomaterial-based chemiluminescence systems for tracing of reactive oxygen species in biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
5
|
Organosilicon Fluorescent Materials. Polymers (Basel) 2023; 15:polym15020332. [PMID: 36679212 PMCID: PMC9862885 DOI: 10.3390/polym15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected.
Collapse
|
6
|
Wang D, Yu W, Jiang B, Zeng T, Song D, Fang S, Zhang Y, Zhang J. A Novel Chemiluminescent Method for Efficient Evaluation of Heterogeneous Fenton Catalysts Using Cigarette Tar. TOXICS 2022; 11:30. [PMID: 36668756 PMCID: PMC9866030 DOI: 10.3390/toxics11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The evaluation of the catalytic capacity of catalysts is indispensable research, as catalytic capacity is a crucial factor to dictate the efficiency of heterogeneous Fenton catalysis. Herein, we obtained cigarette tar-methanol extracts (CTME) by applying methanol to cigarette tar and found that CTME could cause CL reactions with Fe2+/H2O2 systems in acidic, neutral, and alkaline media. The CL spectrum experiment indicated that the emission wavelengths of the CTME CL reaction with Fe2+/H2O2 systems were about 490 nm, 535 nm, and 590 nm. Quenching experiments confirmed that hydroxyl radicals (•OH) were responsible for the CL reaction for CTME. Then the CL property of CTME was applied in-situ to rapidly determine the amounts of •OH in tetrachloro-1,4-benzoquinone (TCBQ)/H2O2 system in acidic, neutral and alkaline media, and the CL intensities correlated the best (R2 = 0.99) with TCBQ concentrations. To demonstrate the utility of the CTME CL method, the catalytic capacity of different types and concentrations of catalysts in heterogeneous Fenton catalysis were examined. It was found that the order of CL intensities was consistent with the order of degradation efficiencies of Rhodamine B, indicating that this method could distinguish the catalytic capacity of catalysts. The CTME CL method could provide a convenient tool for the efficient evaluation of the catalytic capacity of catalysts in heterogeneous Fenton catalysis.
Collapse
Affiliation(s)
- Dabin Wang
- Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Weisong Yu
- Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bin Jiang
- Shandong Tobacco Company of China National Tobacco Company, Jinan 250101, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dean Song
- Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Song Fang
- Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yizhi Zhang
- Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Jiguang Zhang
- Laboratory of Quality & Safety Risk Assessment for Tobacco, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Liu H, Mo T, Zhou Y, Gong H, Zhao D. Electron-rich silicon quantum dots-based charge transfer probe for highly selective chemiluminescence detection of Fe2+ in PM2.5. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Guo Q, Song H, Sun M, Yuan X, Su Y, Lv Y. Co 3O 4 modified polymeric carbon nitride for external light-free chlorine activating degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128193. [PMID: 35086034 DOI: 10.1016/j.jhazmat.2021.128193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Advanced oxidation processes (AOPs) activated by chlorine have emerged as a green and efficient strategy for water treatment and have attracted widespread attention. However, most of them require continuous UV radiation during the degradation reaction, which increases the cost and is not conducive to practical application, in some ways. Hererin we proposed an external light-free chlorine activation methodology for the removal of organic pollutants with the assistance of the intrinsic chemiluminescence (CL) in the system. A very interesting phenomenon, 20-fold enhanced CL of Co3O4 nanoparticles modified polymeric carbon nitride (PCN/Co3O4) was observed in the presence of hypochlorous acid (HClO), compared with the pristine PCN nanosheets. Without ultraviolet (UV), even any other light-emitting devices, the strong intrinsic CL in the PCN/Co3O4-HClO system was found to be conducive to chlorine activation degradation of organic pollutants. The inner connection between the CL of the PCN/Co3O4-HClO system and the chlorine-based AOPs was further explored.
Collapse
Affiliation(s)
- Qi Guo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaohan Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
9
|
Wang Z, Mathew A, Liu H. Silsesquioxane-based porous polymer derived from organic chromophore with AIE characteristics for selective detection of 2,4-dinitrophenol and Ru3+. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Iizuka D, Gon M, Tanaka K, Chujo Y. Acceleration of Chemiluminescence Reactions with Coumarin-modified Polyhedral Oligomeric Silsesquioxane. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daisuke Iizuka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Sun M, Song H, Xie X, Yang W, Su Y, Lv Y. Transient Chemiluminescence Assay for Real-Time Monitoring of the Processes of SO 32--Based Advanced Oxidation Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3170-3180. [PMID: 35170961 DOI: 10.1021/acs.est.1c08362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hydroxyl radical (·OH) is a strong oxidizing agent in situ generated in advanced oxidation processes (AOPs) and crucial for assessing the performances of AOPs toward organic contaminants' degradation. Herein, we developed a specific luminescent probe, APDI (N' N'-di(propylethylenediamine)-perylene-3,4,9,10-tetracarboxylic diimide), to selectively detect ·OH among diverse reactive oxygen species and other radicals. Based on the transient chemiluminescence (TCL) spectra, the in situ concentration profile of ·OH within 0.01 s interval time in classical Fenton reactions and four kinds of SO32--based AOPs was obtained, which provides insights into the high dynamic processes of the whole ·OH generation and consumption processes. Besides, compared with acidic conditions, reduced degradation efficiencies in Fe2+-SO32- and Fe2+-SO32--H2O2 systems were found under neutral conditions. The complete depletion of active free radicals due to SO2-̇ radicals generated from Fe2+ and SO32- should account most for decreased degradation efficiencies evidenced by a new SO2* TCL signal discovered in the TCL spectra. In addition, similar phenomena have also been found in other M(n-1)+-SO32--related AOPs. As SO32- and HSO3- often exist naturally in wastewater, more efforts are needed to improve the performance of Fe2+-H2O2 systems. This discovery has important significance for organic contaminant degradation in a natural environment.
Collapse
Affiliation(s)
- Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Wenxi Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
12
|
Soufi G, Bagher H, Yeganeh Rad L, Minaeian S. Perylene diimide-POSS network for semi selective solid-phase microextraction of lung cancer biomarkers in exhaled breath. Anal Chim Acta 2022; 1198:339550. [DOI: 10.1016/j.aca.2022.339550] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 01/01/2023]
|
13
|
Michalczyk M, Piec K, Zierkiewicz W, Ejfler J, John Ł. Possible coordination modes of copper(II) atom in model silsesquioxanes complexes at various pH conditions: DFT study. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Yu W, Zhao L. Chemiluminescence detection of reactive oxygen species generation and potential environmental applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Sun M, Su Y, Lv Y. Advances in chemiluminescence and electrogenerated chemiluminescence based on silicon nanomaterials. LUMINESCENCE 2020; 35:978-988. [PMID: 32452150 DOI: 10.1002/bio.3805] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/23/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
Since 1950, when chemiluminescence (CL) of siloxane upon treatment with strong oxidants was discovered by Kurtz, many silicon-based nanomaterials with different elements, specific molecules, shapes and sizes have been developed as light emitters, energy acceptors, and catalyzers to provide valuable CL and electrogenerated CL (ECL) detection platforms in analytical chemistry fields. This review mainly focuses on the recent development of their mechanisms and sensing methodologies for small molecules, free radicals, ion, enzyme, protein, DNA, cancer cells, and metabolites based on specific reactions such as aptamer sensing and enzymatic reaction. Additionally, the future trend is discussed.
Collapse
Affiliation(s)
- Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, China.,College of Architecture & Environment, Sichuan University, Chengdu, Sichuan, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, China
| | | |
Collapse
|
16
|
Sun M, Liu H, Su Y, Yang W, Lv Y. Off/On Amino-Functionalized Polyhedral Oligomeric Silsesquioxane-Perylene Diimides Based Hydrophilic Luminescent Polymer for Aqueous Fluoride Ion Detection. Anal Chem 2020; 92:5294-5301. [PMID: 32093470 DOI: 10.1021/acs.analchem.9b05840] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluoride ion detection in water focuses much attention due to the serious healthy impact in human pathologies. For fluoride recognition, the chemical affinity between fluoride and silicon has been developed on the basis of the degradation mechanism. However, most fluorescent probes are the "turn off" type due to the aggregation of the degradational products. Herein, we first developed an "off-on" hydrophilic luminescent polymer composed of amino-functionalized polyhedral oligomeric silsesquioxane (AE-POSS) and perylene diimides (PDIs) for fluoride ion in water. The AE-PDI polymer was "turned off" because of the photoinduced electron transfer (PET) between PDI and AE-POSS, and then after reaction with F-, the fluorescent emission could "turn on" obviously because the PET was blocked by the degradation of the cage. The PET from amino-POSS to PDI was proved by FL spectrum and energies of HOMO and LUMO orbitals. 29Si, 19F NMR, and 1H NMR titration, XRD, FTIR, size analysis, and ion chromatography were applied to demonstrate the degradation mechanism. These results indicated that the higher quantum yield could be obtained by introducing the amide group in the PDI and the products of AE-PDI polymer might exist in the form of complex compounds with partial condensation of organosiloxane. With high selectivity and sensitivity (detection limit of 16.2 ppb), this probe was successfully applied for F- detection in actual water samples.
Collapse
Affiliation(s)
- Mingxia Sun
- College of Architecture & Environment Sichuan University, Chengdu, Sichuan 610064, China
| | - Houjing Liu
- College of Architecture & Environment Sichuan University, Chengdu, Sichuan 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Wenxi Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
17
|
Yan Y, Wang XY, Hai X, Song W, Ding C, Cao J, Bi S. Chemiluminescence resonance energy transfer: From mechanisms to analytical applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115755] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
18
|
Sun T, Su Y, Liu H, Song H, Lv Y. Efficient generation of sulfate radicals in Fe(ii)/S(iv) system induced by WS2 nanosheets and examined by its intrinsic chemiluminescence. Chem Commun (Camb) 2020; 56:6993-6996. [DOI: 10.1039/d0cc01999b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, the generation of more SO4˙− and strong intrinsic chemiluminescence (CL) were achieved through activating sulfite (SO32−) with ferrous ions (Fe2+) on 5 nm-thick WS2 nanosheets.
Collapse
Affiliation(s)
- Tong Sun
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Yingying Su
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
| | - Houjing Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education, College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yi Lv
- Analytical & Testing Center
- Sichuan University
- Chengdu 610064
- China
- Key Laboratory of Green Chemistry & Technology
| |
Collapse
|
19
|
Chen J, Qiu H, Zhao S. Fabrication of chemiluminescence resonance energy transfer platform based on nanomaterial and its application in optical sensing, biological imaging and photodynamic therapy. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115747] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Zhang Y, Hao J, Xu X, Chen X, Wang J. Protein Corona-Triggered Catalytic Inhibition of Insufficient POSS Polymer-Caged Gold Nanoparticles for Sensitive Colorimetric Detection of Metallothioneins. Anal Chem 2019; 92:2080-2087. [DOI: 10.1021/acs.analchem.9b04593] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yue Zhang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Junxia Hao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xiaojian Xu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|