1
|
Woźniczka K, Trojan V, Urbanowicz K, Schreiber P, Zadrożna J, Bączek T, Smoleński RT, Roszkowska A. In vivo profiling of phytocannabinoids in Cannabis spp. varieties via SPME-LC-MS analysis. Anal Chim Acta 2024; 1306:342621. [PMID: 38692790 DOI: 10.1016/j.aca.2024.342621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.
Collapse
Affiliation(s)
- Katarzyna Woźniczka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Václav Trojan
- Cannabis Facility, International Clinical Research Centre, St. Anne's University Hospital, Pekarská 53, 60200, Brno, Czech Republic; Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200, Brno, Czech Republic
| | - Krzysztof Urbanowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Patrik Schreiber
- Cannabis Facility, International Clinical Research Centre, St. Anne's University Hospital, Pekarská 53, 60200, Brno, Czech Republic
| | - Julia Zadrożna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Ryszard Tomasz Smoleński
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211, Gdańsk, Poland
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
2
|
Dincel D, Zeinali S, Pawliszyn J. Determination of free concentration of endocannabinoids in brain tissue. J Pharm Biomed Anal 2023; 235:115624. [PMID: 37595355 DOI: 10.1016/j.jpba.2023.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023]
Abstract
The release of metabolites from their bound to free forms is the main regulatory path in living species. Therefore, the ability to determine the free concentrations of small molecules is highly critical in many biological samples. The main challenges in achieving this task are the interferences inherent to complex matrices and the ability to distinguish between the free and total concentrations. This paper presents a non-invasive microextraction method that enables the determination of endocannabinoids in brain tissue. The proposed method is based on two key principles: the availability of the free concentration of endocannabinoids for partitioning to the solid-phase microextraction (SPME) fiber; and negligible depletion enabled by the small volume of extraction phase on the fiber. These features allow the presented SPME method to provide information about the free concentration of analytes without disturbing the binding equilibrium between the analytes and the matrix. The determination of spiked samples with known concentrations enables the percentage of analyte bound to the tissue to be calculated, which can then be applied to calculate the total concentration from the determined free concentration. This manuscript focuses on the determination of the free concentration and tissue binding percentages of endocannabinoids in brain tissue. Significantly, SPME's small size and potential for non-invasive sampling enable its application in live animal subjects with minimal tissue damage.
Collapse
Affiliation(s)
- Demet Dincel
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; Department of Analytical Chemistry, Faculty of Pharmacy, Bezmialem Vakif University, Fatih, Istanbul 34093, Turkey
| | - Shakiba Zeinali
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
3
|
Bogusiewicz J, Bojko B. Insight into new opportunities in intra-surgical diagnostics of brain tumors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Jiang RW, Jaroch K, Pawliszyn J. Solid-phase microextraction of endogenous metabolites from intact tissue validated using a Biocrates standard reference method kit. J Pharm Anal 2023; 13:55-62. [PMID: 36816540 PMCID: PMC9937786 DOI: 10.1016/j.jpha.2022.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Improved analytical methods for the metabolomic profiling of tissue samples are constantly needed. Currently, conventional sample preparation methods often involve tissue biopsy and/or homogenization, which disrupts the endogenous metabolome. In this study, solid-phase microextraction (SPME) fibers were used to monitor changes in endogenous compounds in homogenized and intact ovine lung tissue. Following SPME, a Biocrates AbsoluteIDQ assay was applied to make a downstream targeted metabolomics analysis and confirm the advantages of in vivo SPME metabolomics. The AbsoluteIDQ kit enabled the targeted analysis of over 100 metabolites via solid-liquid extraction and SPME. Statistical analysis revealed significant differences between conventional liquid extractions from homogenized tissue and SPME results for both homogenized and intact tissue samples. In addition, principal component analysis revealed separated clustering among all the three sample groups, indicating changes in the metabolome due to tissue homogenization and the chosen sample preparation method. Furthermore, clear differences in free metabolites were observed when extractions were performed on the intact and homogenized tissue using identical SPME procedures. Specifically, a direct comparison showed that 47 statistically distinct metabolites were detected between the homogenized and intact lung tissue samples (P < 0.05) using mixed-mode SPME fibers. These changes were probably due to the disruptive homogenization of the tissue. This study's findings highlight both the importance of sample preparation in tissue-based metabolomics studies and SPME's unique ability to perform minimally invasive extractions without tissue biopsy or homogenization while providing broad metabolite coverage.
Collapse
Affiliation(s)
- Runshan Will Jiang
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Karol Jaroch
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, 85-089, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, N2L 3G1, Canada,Corresponding author.
| |
Collapse
|
5
|
Comparative Study of Various Procedures for Extracting Doxorubicin from Animal Tissue Samples. SEPARATIONS 2022. [DOI: 10.3390/separations10010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This article presents a comparative study of selected deproteinization-, liquid–liquid-extraction- (LLE), and solid-phase-extraction (SPE)-based procedures for the isolation of doxorubicin (DOX) and daunorubicin (DAU) as an internal standard (IS) from rat tissue samples. During the experiments, all samples were analyzed via liquid chromatography coupled with fluorescence detection (LC-FL), with analytes being monitored at excitation and emission wavelengths of 487 and 555 nm, respectively. The absolute recoveries of the sample-preparation procedure were then calculated and compared, and the advantages and disadvantages of each approach were considered in depth. Ultimately, SPE with hydrophilic–lipophilic balanced (HLB) sorbents was selected as the most effective extraction procedure as it enabled the absolute recovery of DOX from tissue samples at a level of 91.6 ± 5.1%. Next, the selected HLB-SPE protocol was coupled with LC-FL separation and the resultant method was validated according to FDA and ICH requirements. The validation data confirmed that the developed procedure met all required criteria for bioanalytical methods, with a limit of detection (LOD) and limit of quantification (LOQ) of 0.005 µg/g and 0.01 µg/g, respectively. Finally, the developed protocol was successfully tested on various rat tissues enriched with DOX, confirming its potential as an interesting alternative to previously reported protocols for pharmacokinetic studies and clinical investigations aimed at analysis of the level and biodistribution of DOX in tissue samples after systemic administration of this drug.
Collapse
|
6
|
Huq M, Rosales-Solano H, Pawliszyn J. Investigation of binding of fatty acids to serum albumin to determine free concentrations: Experimental and in-silico approaches. Anal Chim Acta 2022; 1192:339370. [DOI: 10.1016/j.aca.2021.339370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/17/2022]
|
7
|
Yu M, Roszkowska A, Pawliszyn J. In Vivo Solid-Phase Microextraction and Applications in Environmental Sciences. ACS ENVIRONMENTAL AU 2022; 2:30-41. [PMID: 37101756 PMCID: PMC10114724 DOI: 10.1021/acsenvironau.1c00024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solid-phase microextraction (SPME) is a well-established sample-preparation technique for environmental studies. The application of SPME has extended from the headspace extraction of volatile compounds to the capture of active components in living organisms via the direct immersion of SPME probes into the tissue (in vivo SPME). The development of biocompatible coatings and the availability of different calibration approaches enable the in vivo sampling of exogenous and endogenous compounds from the living plants and animals without the need for tissue collection. In addition, new geometries such as thin-film coatings, needle-trap devices, recession needles, coated tips, and blades have increased the sensitivity and robustness of in vivo sampling. In this paper, we detail the fundamentals of in vivo SPME, including the various extraction modes, coating geometries, calibration methods, and data analysis methods that are commonly employed. We also discuss recent applications of in vivo SPME in environmental studies and in the analysis of pollutants in plant and animal tissues, as well as in human saliva, breath, and skin analysis. As we show, in vivo SPME has tremendous potential for the targeted and untargeted screening of small molecules in living organisms for environmental monitoring applications.
Collapse
Affiliation(s)
- Miao Yu
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Anna Roszkowska
- Department of Pharmaceutical Chemistry, Medical University of Gdansk, Gdansk 80-416, Poland
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
8
|
Jaroch K, Taczyńska P, Czechowska M, Bogusiewicz J, Łuczykowski K, Burlikowska K, Bojko B. One extraction tool for in vitro-in vivo extrapolation? SPME-based metabolomics of in vitro 2D, 3D, and in vivo mouse melanoma models. J Pharm Anal 2021; 11:667-674. [PMID: 34765281 PMCID: PMC8572711 DOI: 10.1016/j.jpha.2021.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/01/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023] Open
Abstract
Solid phase microextraction (SPME) in combination with high-resolution mass spectrometry was employed for the determination of metabolomic profile of mouse melanoma growth within in vitro 2D, in vitro 3D, and in vivo models. Such multi-model approach had never been investigated before. Due to the low-invasiveness of SPME, it was possible to perform time-course analysis, which allowed building time profile of biochemical reactions in the studied material. Such approach does not require the multiplication of samples as subsequent analyses are performed from the very same cell culture or from the same individual. SPME already reduces the number of animals required for experiment; therefore, it is with good concordance with the 3Rs rule (replacement, reduction, and refinement). Among tested models, the largest number of compounds was found within the in vitro 2D cell culture model, while in vivo and in vitro 3D models had the lowest number of detected compounds. These results may be connected with a higher metabolic rate, as well as lower integrity of the in vitro 2D model compared to the in vitro 3D model resulting in a lower number of compounds released into medium in the latter model. In terms of in vitro-in vivo extrapolation, the in vitro 2D model performed more similar to in vivo model compared to in vitro 3D model; however, it might have been due to the fact that only compounds secreted to medium were investigated. Thus, in further experiments to obtain full metabolome information, the intraspheroidal assessment or spheroid dissociation would be necessary.
Collapse
Affiliation(s)
- Karol Jaroch
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Paulina Taczyńska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Marta Czechowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Joanna Bogusiewicz
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Kamil Łuczykowski
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Katarzyna Burlikowska
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń Poland, 85-089, Bydgoszcz, Poland
| |
Collapse
|
9
|
Nazdrajić E, Murtada K, Pawliszyn J. The Effect of Sorbent Particles in a Binder on the Mass Transfer Kinetics in Separation Media: In Silico Study and Experimental Verification. Anal Chem 2021; 93:14764-14772. [PMID: 34699167 DOI: 10.1021/acs.analchem.1c03373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Selecting the optimal binder and the sorbent affinity for selected compounds can cause the composite to behave either as an efficient extraction coating, as a permeable membrane, or as an impermeable barrier. If the compound partitions onto the sorbent with high preference, it becomes stationary and the composite behaves as an impermeable barrier, while appropriately optimized affinity will result in effective permeation. To understand this phenomenon, we utilize solid-phase microextraction to characterize the mass transfer attributes of different separation composites. Our results indicate that for strong sorbents, the extraction rate is primarily controlled by the diffusion in the extraction phase rather than the sample matrix, even if it is relatively thin. Low analyte diffusion is caused by the retarding force generated by the partitioning of analytes into the sorbent, as migration through the composite is driven by the unbound form of the compound in the binder. One of the main contributions of this work is that an understanding of the extraction composite parameters that control mass transfer during extraction enables better optimization of binder/sorbent extraction phase composition for a given application. Another contribution of this work shows how a heterogeneous coating model can be simplified into a homogeneous coating model. The developed models enable an enhanced understanding of mass transfer kinetics, and they provide insight into how to optimize the extraction phase parameters for a given method involving sorbent particles in polymeric media, including membranes and paints, in addition to extraction coatings.
Collapse
Affiliation(s)
- Emir Nazdrajić
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Khaled Murtada
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Mass spectrometry based metabolomics of volume-restricted in-vivo brain samples: Actual status and the way forward. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Hu B, Ouyang G. In situ solid phase microextraction sampling of analytes from living human objects for mass spectrometry analysis. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116368] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
12
|
New chemical biopsy tool for spatially resolved profiling of human brain tissue in vivo. Sci Rep 2021; 11:19522. [PMID: 34593948 PMCID: PMC8484280 DOI: 10.1038/s41598-021-98973-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/06/2021] [Indexed: 11/08/2022] Open
Abstract
It is extremely challenging to perform chemical analyses of the brain, particularly in humans, due to the restricted access to this organ. Imaging techniques are the primary approach used in clinical practice, but they only provide limited information about brain chemistry. Solid-phase microextraction (SPME) has been presented recently as a chemical biopsy tool for the study of animal brains. The current work demonstrates for the first time the use of SPME for the spatially resolved sampling of the human brain in vivo. Specially designed multi-probe sampling device was used to simultaneously extract metabolites from the white and grey matter of patients undergoing brain tumor biopsies. Samples were collected by inserting the probes along the planned trajectory of the biopsy needle prior to the procedure, which was followed by metabolomic and lipidomic analyses. The results revealed that studied brain structures were predominantly composed of lipids, while the concentration and diversity of detected metabolites was higher in white than in grey matter. Although the small number of participants in this research precluded conclusions of a biological nature, the results highlight the advantages of the proposed SPME approach, as well as disadvantages that should be addressed in future studies.
Collapse
|
13
|
Core-shell structured Fe 2O 3/CeO 2@MnO 2 microspheres with abundant surface oxygen for sensitive solid-phase microextraction of polycyclic aromatic hydrocarbons from water. Mikrochim Acta 2021; 188:337. [PMID: 34510313 DOI: 10.1007/s00604-021-05004-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
Core-shell structured Fe2O3/CeO2@MnO2 microspheres were fabricated and used as solid-phase microextraction coating for determination of polycyclic aromatic hydrocarbons (PAHs) in water samples. XPS spectra demonstrated the generation of abundant surface oxygen on Fe2O3/CeO2@MnO2 microspheres, which provided binding sites for enhancement of analyte extraction. Under optimized conditions, the proposed method presented good linearity in the concentration range 0.04-100 ng mL-1, with low limits of detection varying from 0.38 to 3.57 ng L-1 for eight PAHs. Relative standard deviations for a single fiber and five batches of fibers were in the ranges of 4.1-8.2% and 7.1-11.4%, respectively. The proposed method was successfully used for determination of PAHs in real river water samples with recoveries ranging from 87.1 to 115.9%. The proposed method using as-prepared Fe2O3/CeO2@MnO2 microspheres as SPME coating exhibit significant potential for real sample analysis due to its excellent reproducibility, high sensitivity, and good linearity.
Collapse
|
14
|
Roy KS, Nazdrajić E, Shimelis OI, Ross MJ, Chen Y, Cramer H, Pawliszyn J. Optimizing a High-Throughput Solid-Phase Microextraction System to Determine the Plasma Protein Binding of Drugs in Human Plasma. Anal Chem 2021; 93:11061-11065. [PMID: 34353028 DOI: 10.1021/acs.analchem.1c01986] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plasma protein binding refers to the binding of a drug to plasma proteins after entering the body. The measurement of plasma protein binding is essential during drug development and in clinical practice, as it provides a more detailed understanding of the available free concentration of a drug in the blood, which is in turn critical for pharmacokinetics and pharmacodynamics studies. In addition, the accurate determination of the free concentration of a drug in the blood is also highly important for therapeutic drug monitoring and in personalized medicine. The present study uses C18-coated solid-phase microextraction 96-pin devices to determine the free concentrations of a set of drugs in plasma, as well as the plasma protein binding of drugs with a wide range of physicochemical properties. It should be noted that the extracted amounts used to calculate the binding constants and plasma protein bindings should be measured at respective equilibrium for plasma and phosphate buffer. Therefore, special attention is placed on properly determining the equilibration times required to correctly estimate the free concentrations of drugs in the investigated systems. The plasma protein binding values obtained with the 96-pin devices are consistent with those reported in the literature. The 96-pin device used in this research can be easily coupled with a Concept96 or other automated robotic systems to create an automated plasma protein binding determination protocol that is both more time and labor efficient compared to conventional equilibrium dialysis and ultrafiltration methods.
Collapse
Affiliation(s)
- Kanchan Sinha Roy
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Emir Nazdrajić
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Olga I Shimelis
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - M James Ross
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Yong Chen
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Hugh Cramer
- MilliporeSigma, 595 N. Harrison Road, Bellefonte, Pennsylvania 16823, United States
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Reyes-Garcés N, Boyacı E, Gómez-Ríos GA, Olkowicz M, Monnin C, Bojko B, Vuckovic D, Pawliszyn J. Assessment of solid phase microextraction as a sample preparation tool for untargeted analysis of brain tissue using liquid chromatography-mass spectrometry. J Chromatogr A 2021; 1638:461862. [PMID: 33433374 DOI: 10.1016/j.chroma.2020.461862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/19/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022]
Abstract
This work presents an evaluation of solid-phase microextraction (SPME) SPME in combination with liquid chromatography-high resolution mass spectrometry (LC-HRMS) as an analytical approach for untargeted brain analysis. The study included a characterization of the metabolite coverage provided by C18, mixed-mode (MM, with benzene sulfonic acid and C18 functionalities), and hydrophilic lipophilic balanced (HLB) particles as sorbents in SPME coatings after extraction from cow brain homogenate at static conditions. The effects of desorption solvent, extraction time, and chromatographic modes on the metabolite features detected were investigated. Method precision and absolute matrix effects were also assessed. Among the main findings of this work, it was observed that all three tested coating chemistries were able to provide comparable brain tissue information. HLB provided higher responses for polar metabolites; however, as these fibers were prepared in-house, higher inter-fiber relative standard deviations were also observed. C18 and HLB coatings offered similar responses with respect to lipid-related features, whereas MM and C18 provided the best results in terms of method precision. Our results also showed that the use of methanol is essential for effective desorption of non-polar metabolites. Using a reversed-phase chromatographic method, an average of 800 and 1200 brain metabolite features detected in positive and negative modes, respectively, met inter-fibre RSD values below 30% (n=4) after removal of fibre and solvent artefacts from the associated datasets. For features detected using a lipidomics method, a total of 900 and 1800 features detected using C18 fibers in positive and negative mode, respectively, met the same criteria. In terms of absolute matrix effects, the majority of the model metabolites tested showed values between 80 and 120%, which are within the acceptable range. Overall, the findings of this work lay the foundation for further optimization of parameters for SPME-LC-HRMS methods suitable for in vivo and ex vivo brain (and other tissue) untargeted studies, and support the applicability of this approach for non-destructive tissue metabolomics.
Collapse
Affiliation(s)
| | - Ezel Boyacı
- Department of Chemistry, University of Waterloo, ON N2L 3G1, Canada
| | | | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, ON N2L 3G1, Canada
| | - Cian Monnin
- Department of Chemistry and Biochemistry, Concordia University, Montreal QC H4B 1R6, Canada
| | - Barbara Bojko
- Department of Chemistry, University of Waterloo, ON N2L 3G1, Canada
| | - Dajana Vuckovic
- Department of Chemistry and Biochemistry, Concordia University, Montreal QC H4B 1R6, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
16
|
Rahmani F, Hosseini MRM, Es-Haghi A, Mollahosseini A. A 96-Monolithic inorganic hollow fiber array as a new geometry for high throughput solid-phase microextraction of doxorubicin in water and human urine samples coupled with liquid chromatography-tandem mass spectrometry. J Chromatogr A 2020; 1627:461413. [PMID: 32823111 DOI: 10.1016/j.chroma.2020.461413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
Innovations in extraction phases, extraction modes and hyphenated instrument configurations, are the most important issues to address for progress in the solid phase microextraction (SPME) methodology. In this regard, we have embarked on the development of a novel biocompatible 96-monolithic inorganic hollow fiber (96-MIHF) array as a new configuration for high-throughput SPME on a 96-well plate system. An arrangement of highly ordered 96 titania/Hydroxyapatite (TiO2/HAP) nanocomposite hollow fibers and corresponding stainless-steel needles on a Teflon plate holder were used as the extraction module. The inorganic hollow fibers were prepared via a rapid and reproducible template approach (Polypropylene hollow fiber) in combination with a sol-gel method in the presence of polyvinyl alcohol (PVA), as a network maker. The hollow fiber-shape sorbents were obtained with excellent precision by weight (RSD% = 4.98, n = 10) and length (RSD% = 1.08, n = 10) criteria. The proposed design can overcome a number of geometrically dependent drawbacks of conventional high-throughput SPME methods, mainly the ones related to sorbent amount and surface area due to possessing inner/outer surfaces without additional internal supports. The SPME platform, for the first time, was successfully applied for the extraction and preconcentration of doxorubicin from urine and water media without requiring sample preparation and free from significant matrix effect. The extracted analyte was analyzed by liquid chromatography-ion trap tandem mass spectrometry (LC-MS/MS). Highly satisfactory analytical figures of merit were obtained under optimized conditions. The limit of detection (LOD), limit of quantification (LOQ) and linearity of determination were 0.1 ng mL-1, 0.25 ng mL-1 and 0.25 to 4000 ng mL-1, respectively. The interday, intraday and inter sorbent precisions for three concentration levels ranged from 2.01 to 8.09 % (n = 3), 1.02 to 8.65 % (n = 5) and 0.99 to 1.02% (n = 15), respectively. The mean intra-well RSD value for 96 individual wells in 96-MIHF-SPME-LC-MS/MS (n = 3) at the medium concentration level was 7.81%.
Collapse
Affiliation(s)
- Fereidoon Rahmani
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran
| | - Mohammad-Reza Milani Hosseini
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran.
| | - Ali Es-Haghi
- Department of Physico Chemistry, Razi Vaccine & Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 31975/148 Karaj, Iran.
| | - Afsaneh Mollahosseini
- Department of Analytical Chemistry, Faculty of Chemistry, Iran University of Science and Technology, P.O. Box 16846/11367 Narmak, Tehran, Iran
| |
Collapse
|
17
|
Galievsky V, Pawliszyn J. Fluorometer for Screening of Doxorubicin in Perfusate Solution and Tissue with Solid-Phase Microextraction Chemical Biopsy Sampling. Anal Chem 2020; 92:13025-13033. [PMID: 32847350 DOI: 10.1021/acs.analchem.0c01905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent development of an in vivo solid-phase microextraction (SPME) method capable of analyzing drugs and metabolic products in biofluids and living tissues holds great promise. The standard in vivo SPME protocol based on mass spectrometry is a very powerful analytical approach, but it is not practical for on-site analysis in many cases. In this paper, we present a fluorescence-based SPME method and a prototype of a portable fluorometer that is capable of quickly quantifying concentrations of the anticancer drug, doxorubicin (DOX). The instrument uses thin coated, biocompatible SPME fibers, which we have previously presented as a chemical biopsy tool for use during in vivo lung perfusion (IVLP) procedures within a hospital setting. In this research, we test SPME fibers with C8-SCX, C18, and HLB coatings with our fluorometer. The mixed-mode C8-SCX fibers showed the best sensitivity of the three and were therefore used to examine DOX extraction from perfusate solution and a homogenized lamb lung tissue. The maximum concentration of free active sites in the C8-SCX fiber and the adsorption equilibrium constant were determined to be (9.1 ± 0.3) × 10-7 mol m-2 and 420 ± 30 m3 mol-1, respectively. Finally, the detection limits for DOX extracted from buffer, perfusate, and lung tissue were 40, 100, and 3700 μg L-1, respectively.
Collapse
Affiliation(s)
- Victor Galievsky
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Bojko B, Looby N, Olkowicz M, Roszkowska A, Kupcewicz B, Reck Dos Santos P, Ramadan K, Keshavjee S, Waddell TK, Gómez-Ríos G, Tascon M, Goryński K, Cypel M, Pawliszyn J. Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion. J Pharm Anal 2020; 11:37-47. [PMID: 33717610 PMCID: PMC7930785 DOI: 10.1016/j.jpha.2020.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of a novel in vivo lung perfusion (IVLP) procedure allows localized delivery of high-dose doxorubicin (DOX) for targeting residual micrometastatic disease in the lungs. However, DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window. A small dimension nitinol wire coated with a sorbent of biocompatible morphology (Bio-SPME) has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites. The in vivo Bio-SPME-IVLP experiments were performed on pig model over various (150 and 225 mg/m2) drug doses, and during human clinical trial. Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL (respectively) dose of DOX during a 3-h IVLP. In both pig and human cases, DOX tissue levels presented similar trends during IVLP. Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure. In addition to DOX levels, Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening, providing information about lung status during drug administration. Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach. Bio-SPME also extracted various endogenous molecules, thus providing a real-time snapshot of the physiology of the cells, which might assist in the tailoring of personalized treatment strategy.
Collapse
Affiliation(s)
- Barbara Bojko
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Nikita Looby
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 30-348 Krakow, Poland
| | - Anna Roszkowska
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmaceutical Chemistry, Medical University of Gdansk, 80-416, Gdansk, Poland
| | - Bogumiła Kupcewicz
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | | | - Khaled Ramadan
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | - Shaf Keshavjee
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | | | - German Gómez-Ríos
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Marcos Tascon
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| | - Krzysztof Goryński
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada.,Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-089, Bydgoszcz, Poland
| | - Marcelo Cypel
- University Health Network - TGH, Toronto, ON M5G 2C4, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Waterloo, ON M1B 6G3, Canada
| |
Collapse
|
19
|
Fast and efficient analyses of the post-mortem human blood and bone marrow using DI-SPME/LC-TOFMS method for forensic medicine purposes. Talanta 2020; 209:120533. [DOI: 10.1016/j.talanta.2019.120533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
20
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2020; 59:2392-2398. [DOI: 10.1002/anie.201909430] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|
21
|
Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Napylov A, Reyes‐Garces N, Gomez‐Rios G, Olkowicz M, Lendor S, Monnin C, Bojko B, Hamani C, Pawliszyn J, Vuckovic D. In Vivo Solid‐Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alexander Napylov
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Nathaly Reyes‐Garces
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - German Gomez‐Rios
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Restek Corporation Bellefonte PA 16823 USA
| | - Mariola Olkowicz
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Sofia Lendor
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Cian Monnin
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| | - Barbara Bojko
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
- Current address: Department of Pharmacodynamics and Molecular PharmacologyFaculty of PharmacyCollegium Medicum in BydgoszczNicolaus Copernicus University in Toruń Bydgoszcz Poland
| | - Clement Hamani
- Neuroimaging Research SectionCentre for Addiction and Mental Health 250 College Street Toronto ON M5T 1R8 Canada
- Harquail Centre for NeuromodulationSunnybrook Research InstituteSunnybrook Health Sciences Centre 2075, Bayview Avenue Toronto ON M4N 3M5 Canada
| | - Janusz Pawliszyn
- Department of ChemistryUniversity of Waterloo 200 University Avenue Waterloo ON N2L 3G1 Canada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia University 7141 Sherbrooke Street West Montreal QC H4B 1R6 Canada
| |
Collapse
|