1
|
Li HI, Prabhu GRD, Buchowiecki K, Urban PL. High-Speed Schlieren Imaging of Vapor Formation in Electrospray Plume. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:244-254. [PMID: 38227955 DOI: 10.1021/jasms.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Previous mechanistic descriptions of electrosprays mostly focused on the dynamics of Taylor cones, initial droplets, and progeny droplets. However, vapor formation during droplet desolvation in an electrospray plume has not been discussed to a great extent. Here, we implement a double-pass on-axis schlieren high-speed imaging system to observe generation and propagation of vapors in an offline electrospray source under different conditions. Switching between turbulent and laminar vapor flow was observed for all of the scanned conditions, which may be attributed to randomly occurring disturbances in the sample flow inside the electrospray emitter. Calculation of mean vapor flow velocity and analysis of vapor flow patterns were performed using in-house developed image processing programs. Experiments performed at different electrospray voltages (0-6 kV), solvent flow rates (100-600 μL min-1), and methanol concentrations (50-100%), indicate only a weak dependency between electrospray voltage and mean vapor velocity, implying that the vapor is mostly neutral; thus, the vapor is not accelerated by electric field. On the other hand, electrospraying solutions of analytes (with mass 151 Da or 12 kDa) did not remarkably increase the overall vapor flow velocity. The source of vapor's velocity is attributed to the inertia of the electrospray droplets. Although there are some differences between a modern electrospray ionization (ESI) setup and the setup used in our experiment (e.g., using a higher flow rate and larger emitter), we believe the findings of our study can be projected to a modern ESI setup.
Collapse
Affiliation(s)
- Hou-I Li
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Krzysztof Buchowiecki
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Luan M, Hou Z, Zhang B, Ma L, Yuan S, Liu Y, Huang G. Inter-Domain Repulsion of Dumbbell-Shaped Calmodulin during Electrospray Ionization Revealed by Molecular Dynamics Simulations. Anal Chem 2023; 95:8798-8806. [PMID: 37309130 DOI: 10.1021/acs.analchem.2c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The mechanisms whereby protein ions are released from nanodroplets at the liquid-gas interface have continued to be controversial since electrospray ionization (ESI) mass spectrometry was widely applied in biomolecular structure analysis in solution. Several viable pathways have been proposed and verified for single-domain proteins. However, the ESI mechanism of multi-domain proteins with more complicated and flexible structures remains unclear. Herein, dumbbell-shaped calmodulin was chosen as a multi-domain protein model to perform molecular dynamics simulations to investigate the structural evolution during the ESI process. For [Ca4CAM], the protein followed the classical charge residue model. As the inter-domain electrostatic repulsion increased, the droplet was found to split into two sub-droplets, while stronger-repulsive apo-calmodulin unfolded during the early evaporation stage. We designated this novel ESI mechanism as the domain repulsion model, which provides new mechanistic insights into further exploration of proteins containing more domains. Our results suggest that greater attention should be paid to the effect of domain-domain interactions on structure retention during liquid-gas interface transfer when mass spectrometry is used as the developing technique in gas phase structural biology.
Collapse
Affiliation(s)
- Moujun Luan
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Buchun Zhang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Likun Ma
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Siming Yuan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Yangzhong Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Specific electrolyte effects on hemoglobin in denaturing medium investigated through electro spray ionization mass spectrometry. J Inorg Biochem 2022; 234:111872. [DOI: 10.1016/j.jinorgbio.2022.111872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 12/14/2022]
|
4
|
Källsten M, Visanu D, Pijnappel M, Lehmann F, Bergquist J, Lind SB, Kovac L. Potential Use of Supercharging Agents for Improved Mass Spectrometric Analysis of Monoclonal Antibodies and Antibody-Drug Conjugates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1161-1167. [PMID: 35704800 DOI: 10.1021/jasms.2c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The addition of supercharging (SC) reagents in electrospray ionization coupled mass spectrometry (ESI-MS) has demonstrated several advantages for protein analysis such as reduced required mass range of the instrument, narrowed charge-state distribution, increased sensitivity, and adduct suppression. The potential use of SC reagents to improve analyses of larger and complex protein molecules such as monoclonal antibodies and antibody-drug conjugates (ADCs) has not been previously reported. In this study, the effect of seven SC reagents (meta-nitrobenzyl alcohol (m-NBA), dimethyl sulfoxide (DMSO), ortho-nitroanisole (o-NA), propane sultone (PS), ethylene carbonate (EC), propylene carbonate (PC), and sulfolane) on ESI-MS acquired spectra of deglycosylated, intact, and reduced trastuzumab and a vcMMAE-trastuzumab ADC was investigated under denaturing conditions. The addition of any of the SC reagents resulted in a higher average charge state observed for all tested reagents for both trastuzumab and the ADC and a narrower charge-state envelope for o-NA and 1% sulfolane for trastuzumab. However, improved peak shapes or increased sensitivity was observed for several reagents, overall increasing the spectra quality. Finally, it was shown that SC reagents can be safely used for ADC analysis without impacting the obtained drug-to-antibody (DAR) values, as all DAR values were within 0.1 from the control sample.
Collapse
Affiliation(s)
- Malin Källsten
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, S75237 Uppsala, Sweden
- Recipharm OT Chemistry AB, S75450 Uppsala, Sweden
| | - Diana Visanu
- Recipharm OT Chemistry AB, S75450 Uppsala, Sweden
| | | | | | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, S75237 Uppsala, Sweden
| | - Sara Bergström Lind
- Analytical Chemistry, Department of Chemistry-BMC, Uppsala University, S75237 Uppsala, Sweden
| | - Lucia Kovac
- Recipharm OT Chemistry AB, S75450 Uppsala, Sweden
| |
Collapse
|
5
|
Bailey AO, Huguet R, Mullen C, Syka JEP, Russell WK. Ion-Ion Charge Reduction Addresses Multiple Challenges Common to Denaturing Intact Mass Analysis. Anal Chem 2022; 94:3930-3938. [PMID: 35189062 DOI: 10.1021/acs.analchem.1c04973] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Complete LC-MS-based protein primary sequence characterization requires measurement of intact protein profiles under denaturing and/or reducing conditions. To address issues of protein overcharging of unstructured proteins under acidic, denaturing conditions and sample heterogeneity (macro- and micro-scales) which often confound denaturing intact mass analysis of a wide variety of protein samples, we propose the use of broadband isolation of entire charge state distributions of intact proteins followed by ion-ion proton transfer charge reduction, which we have termed "full scan PTCR" (fsPTCR). Using rapid denaturing size exclusion chromatography coupled to fsPTCR-Orbitrap MS and time-resolved deconvolution data analysis, we demonstrate a strategy for method optimization, leading to significant analytical advantages over conventional MS1. Denaturing analysis of the flexible bacterial translation initiation factor 2 (91 kDa) using fsPTCR reduced overcharging and showed an 11-fold gain in S/N compared to conventional MS1. Analysis by fsPTCR-MS of the microheterogeneous glycoprotein fetuin revealed twice as many proteoforms as MS1 (112 vs 56). In a macroheterogeneous mixture of proteins ranging from 14 to 148 kDa, fsPTCR provided more than 10-fold increased sensitivity and quantitative accuracy for diluted bovine serum albumin (66 kDa). Finally, our analysis shows that collisional gas pressure is a key parameter which can be utilized during fsPTCR to retain or remove larger proteins from acquired spectra.
Collapse
Affiliation(s)
- Aaron O Bailey
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| | - Romain Huguet
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - Christopher Mullen
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - John E P Syka
- Thermo Fisher Scientific, 355 River Oaks Pkwy, San Jose, California 95134, United States
| | - William K Russell
- University of Texas Medical Branch, 301 University Drive, Galveston, Texas 77551, United States
| |
Collapse
|
6
|
Li YW, Chi Q, Feng T, Xiao H, Li L, Wang X. Interactions of indole alkaloids with myoglobin: A mass spectrometry based spectrometric and computational method. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8656. [PMID: 31721336 DOI: 10.1002/rcm.8656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Interactions of drug molecules and proteins play important roles in physiological and pathological processes in vivo. It is of significance to establish a reliable strategy for studying protein-drug ligand interactions and would be helpful for the design and screening of new drugs in pharmacological research. METHODS The interactions between four indole alkaloids (IAs) extracted from Ophiorrhiza japonica (O. japonica) and myoglobin (Mb) protein were investigated using a multi-spectrometric and computational method of native electrospray ionization mass spectrometry (native ESI-MS), hydrogen/deuterium exchange mass spectrometry (HDX-MS), circular dichroism (CD) and molecular docking (MD). RESULTS The IA-bound Mb complexes were analyzed using native ESI-MS, with the obtained protein-to-ligand stoichiometry at 1:1, 1:2 and 1:3. Binding constants were measured according to the interpretation of MS spectra. MD complemented MS measurements, probing the binding sites and modes of the four IAs to Mb. Analyses involving CD and HDX-MS demonstrated that exposure to IAs could affect the conformation of Mb by decreasing the α-helix content and made Mb more susceptible to HDX at the backbone. CONCLUSIONS A new MS-based integrated analysis method has been developed to successfully study the interactions of Mb and IAs extracted from O. japonica. The experimental and calculation results have good consistency, revealing all of the four IA molecules could bind to Mb to form 1:1, 1:2 and 1:3 Mb-IA complexes. The order of binding ability of these IAs to Mb was ophiorrhine B > compound C > ophiorrhine A > compound D. CD and HDX-MS results indicated that binding with IAs destabilizes Mb. HDX-MS analysis suggests that Mb becomes more susceptible to HDX, indicating that binding with IAs destabilizes the structure of Mb. In addition, the interaction with IAs affected the overall structure of Mb, ascribed to the decrease of α-helix content and less folding of the backbone.
Collapse
Affiliation(s)
- Ya-Wen Li
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Quan Chi
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074, Wuhan, China
| | - Huaming Xiao
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Linghe Li
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| | - Xian Wang
- College of Chemistry and Materials Science, South-Central University for Nationalities, 430074, Wuhan, China
| |
Collapse
|
7
|
Thinius M, Polaczek C, Langner M, Bräkling S, Haack A, Kersten H, Benter T. Charge Retention/Charge Depletion in ESI-MS: Experimental Evidence. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:773-784. [PMID: 32150403 DOI: 10.1021/jasms.9b00044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effects of liquid and gas phase additives (chemical modifiers) on the ion signal distribution for Substance P (SP), recorded with a nanoelectrospray setup, are evaluated. Depletion of the higher charge state of Substance P ([SP+3H]3+) is observed with polar protic gas phase modifiers. This is attributed to their ability to form larger hydrogen-bonded clusters, whose proton affinity increases with cluster size. These clusters are able to deprotonate the higher charge state. "Supercharging agents" (SCAs) as well as aprotic polar gas phase modifiers, which promote the retention of the higher charge state of Substance P, do not form such large clusters under the given conditions and are therefore not able to deprotonate Substance P. Both SCAs and aprotic modifiers form clusters with the higher charge state, leading to stabilization of the charge. Whereas supercharging agents have low vapor pressures and are therefore enriched in late-stage electrospray droplets, the gas phase modifiers are volatile organic solvents. Collision induced dissociation experiments revealed that the addition of a modifier significantly delays the droplet evaporation and ion release process. This indicates that the droplet takes up the gas phase modifier to a certain extent (accommodation). Depending on the modifier's properties either charge depletion or retention may eventually be promoted.
Collapse
Affiliation(s)
- Marco Thinius
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Christine Polaczek
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Markus Langner
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Steffen Bräkling
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Alexander Haack
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Hendrik Kersten
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gauss Str. 20, 42119 Wuppertal, Germany
| |
Collapse
|
8
|
Feng L, Gong X, Song J, Zhai R, Huang Z, Jiang Y, Fang X, Dai X. Strong Acid Anions Significantly Increasing the Charge State of Proteins during Electrospray Ionization. Anal Chem 2020; 92:1770-1779. [PMID: 31769658 DOI: 10.1021/acs.analchem.9b03416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulation of protein's charge state in electrospray is of great importance to the analysis of proteins. Different methods have been developed so far to increase the charge state of proteins. In this work, we investigated the influence of different anions on the charge state of proteins. Both strong acid anions and weak acid anions were taken into consideration. The results showed that the presence of 5 mM strong acid anions in acidic solutions could significantly increase the charge state of proteins. In comparison, weak acid anions with the same concentration in solution had little impact on the charge state of proteins. The species of the cations in the samples had very limited influence on the charge state. The presence of a certain amount of acid in sample solution was critical to the effect of strong acid anions. Almost no increase of the charge state was observed when no acid was added to the samples. However, remarkable increase of the charge state of myoglobin (Mb) was observed when 0.001% (v/v) acetic acid (HAc) was added to the sample together with 5 mM sodium chloride (NaCl). A higher concentration of acid in samples would further enhance the effect of strong acid anions on the increase of the charge state. Further investigations into the mechanism revealed that the effect of the strong acid anions on the charge state of proteins was based on the unfolding of the protein molecules during electrospray ionization (ESI). The interactions among H+, anions, and protein molecules were so strong that it caused the unfolding of protein molecules and resulted in the increasing of proteins' charge states. The key factor that made strong acid anions and weak acid anions different in the results was the hydrolysis of the weak acid anions in acidic solutions. The present work furthers our understanding about electrospray, as well as the regulation of protein charge state. The presence of strong acid anions in acidic solutions can significantly influence the charge state of proteins in electrospray. Attention should be paid to this when regulating the charge state of proteins.
Collapse
Affiliation(s)
- Lulu Feng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Jiafeng Song
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Zejian Huang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science , National Institute of Metrology , Beijing 100029 , People's Republic of China
| |
Collapse
|
9
|
Javanshad R, Maser TL, Honarvar E, Venter AR. The Addition of Polar Organic Solvent Vapors During the Analysis of Proteins by DESI-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2571-2575. [PMID: 31758521 DOI: 10.1007/s13361-019-02345-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Exposure of electrospray droplets to organic vapors was shown to dramatically reduce alkali-metal adduction on protein ions and shift protein charge states. Since DESI-MS is affected by similar adduct species as ESI-MS and shares similar ionization mechanisms, polar organic vapor additives should likewise also improve the DESI-MS analysis of proteins. Here the DESI spray was exposed to a variety of polar organic vapor additives. Head space vapors of polar organic solvents were entrained in nitrogen gas and delivered to the atmosphere inside a semi-enclosed plastic enclosure surrounding the spray plume. The vapors of acetone, acetonitrile, ethyl acetate, methanol, and water were investigated. Vapor dependent effects were observed with respect to changes in protein charge state distributions and signal intensities. With ethyl acetate vapor addition, the signal intensities of all proteins investigated were significantly increased, including proteins larger than 25 kDa such as carbonic anhydrase II and bovine serum albumin.
Collapse
Affiliation(s)
- Roshan Javanshad
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Tara L Maser
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Elahe Honarvar
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Andre R Venter
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA.
| |
Collapse
|
10
|
Konermann L, Metwally H, Duez Q, Peters I. Charging and supercharging of proteins for mass spectrometry: recent insights into the mechanisms of electrospray ionization. Analyst 2019; 144:6157-6171. [DOI: 10.1039/c9an01201j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular dynamics simulations have uncovered mechanistic details of the protein ESI process under various experimental conditions.
Collapse
Affiliation(s)
- Lars Konermann
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Haidy Metwally
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Quentin Duez
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| | - Insa Peters
- Department of Chemistry
- The University of Western Ontario
- London
- Canada
| |
Collapse
|