1
|
Recent applications and chiral separation developments based on stationary phases in open tubular capillary electrochromatography (2019–2022). J Pharm Anal 2023; 13:323-339. [PMID: 37181297 PMCID: PMC10173184 DOI: 10.1016/j.jpha.2023.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Capillary electrochromatography (CEC) plays a significant role in chiral separation via the double separation principle, partition coefficient difference between the two phases, and electroosmotic flow-driven separation. Given the distinct properties of the inner wall stationary phase (SP), the separation ability of each SP differs from one another. Particularly, it provides large room for promising applications of open tubular capillary electrochromatography (OT-CEC). We divided the OT-CEC SPs developed over the past four years into six types: ionic liquids, nanoparticle materials, microporous materials, biomaterials, non-nanopolymers, and others, to mainly introduce their characteristics in chiral drug separation. There also added a few classic SPs that occurred within ten years as supplements to enrich the features of each SP. Additionally, we discuss their applications in metabolomics, food, cosmetics, environment, and biology as analytes in addition to chiral drugs. OT-CEC plays an increasingly significant role in chiral separation and may promote the development of capillary electrophoresis (CE) combined with other instruments in recent years, such as CE with mass spectrometry (CE/MS) and CE with ultraviolet light detector (CE/UV).
Collapse
|
2
|
Golubova A, Lanekoff I. Surface sampling capillary electrophoresis-mass spectrometry for a direct chemical characterization of tissue and blood samples. Electrophoresis 2023; 44:387-394. [PMID: 36330562 PMCID: PMC10107203 DOI: 10.1002/elps.202200183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Capillary electrophoresis (CE) is a powerful separation tool for non-targeted analysis of chemically complex samples, such as blood, urine, and tissue. However, traditionally CE requires samples in solution for analysis, which limits information on analyte distribution and heterogeneity in tissue. The recent development of surface sampling CE-mass spectrometry (SS-CE-MS) brings these advantages of CE to solid samples and enables chemical mapping directly from the tissue surface without laborious sample preparation. Here, we describe developments of SS-CE-MS to increase reproducibility and stability for metabolite, lipid, and protein extraction from tissue sections and dried blood spots. Additionally, we report the first electrokinetic sequential sample injection for high throughput analysis. We foresee that the wide molecular coverage from a distinct tissue region in combination with higher throughput will provide novel information on biological function and dysfunction.
Collapse
Affiliation(s)
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Marques C, Liu L, Duncan KD, Lanekoff I. A Direct Infusion Probe for Rapid Metabolomics of Low-Volume Samples. Anal Chem 2022; 94:12875-12883. [PMID: 36070505 PMCID: PMC9494293 DOI: 10.1021/acs.analchem.2c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Targeted and nontargeted metabolomics has the potential to evaluate and detect global metabolite changes in biological systems. Direct infusion mass spectrometric analysis enables detection of all ionizable small molecules, thus simultaneously providing information on both metabolites and lipids in chemically complex samples. However, to unravel the heterogeneity of the metabolic status of cells in culture and tissue a low number of cells per sample should be analyzed with high sensitivity, which requires low sample volumes. Here, we present the design and characterization of the direct infusion probe, DIP. The DIP is simple to build and position directly in front of a mass spectrometer for rapid metabolomics of chemically complex biological samples using pneumatically assisted electrospray ionization at 1 μL/min flow rate. The resulting data is acquired in a square wave profile with minimal carryover between samples that enhances throughput and enables several minutes of uniform MS signal from 5 μL sample volumes. The DIP was applied to study the intracellular metabolism of insulin secreting INS-1 cells and the results show that exposure to 20 mM glucose for 15 min significantly alters the abundance of several small metabolites, amino acids, and lipids.
Collapse
Affiliation(s)
- Cátia Marques
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Liangwen Liu
- Department
of Medical Cell Biology, Uppsala University, 75123 Uppsala, Sweden
| | - Kyle D. Duncan
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| | - Ingela Lanekoff
- Department
of Chemistry—BMC, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
4
|
Li H, Guo C, Zhang Q, Bao L, Zheng Q, Guo Z, Chen Y. A substantial increase of analytical throughput in capillary electrophoresis throughput by separation-interrupted sequential injections. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1995-2004. [PMID: 33955989 DOI: 10.1039/d1ay00223f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
How to further improve the throughput of capillary electrophoresis (CE) is a fascinating question. Herein an idea to substantially increase the throughput of CE has been proposed together with theory and experimental demonstration. The key is to introduce samples for CE, one after another, by a short suspension of voltage application, which was hence termed separation-interrupted sequential injections (Sisi). The idea was demonstrated to be feasible on a laboratory-built CE instrument coupled with tandem C4D (contactless capacitively-coupled conductivity) detectors. At least 50 injections of a testing sample (mixture of NH4+, K+, Ca2+, Na+ and Mg2+) were successfully separated in only a single run. The separation took 145 min in total, equivalent to 2.9 min per analysis which is only 21% of that of normal CE. Quantification of the separated ions was performed, with a limit of detection of 1.1-2.6 μM, a limit of quantification of 3.2-8.9 μM, and a linear range up to 1000 μM (R2 > 0.99). The recovery was between 88% and 112% measured by spiking standards into samples at low, middle and high levels. The real applicability of Sisi-CE was evaluated by direct injection and analysis of 45 mineral water samples also in a single run. Its clinical application potential was demonstrated by high throughput assay of the calcium and zinc gluconate oral solution formula, and the blood potassium of hyperkalemia and hypokalemia from patients with renal failure disease. This method can be extended to other applications such as omics studies through the use of more suitable detectors. The theory proposed may also be applicable to other high throughput methods.
Collapse
Affiliation(s)
- Hongliang Li
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Guo
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianchun Zhang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi 562400, China
| | - Linchun Bao
- Clinical Laboratory, Qian Xi Nan People's Hospital, Xingyi 562400, China
| | - Qingfeng Zheng
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenpeng Guo
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Huang L, Fang M, Cupp-Sutton KA, Wang Z, Smith K, Wu S. Spray-Capillary-Based Capillary Electrophoresis Mass Spectrometry for Metabolite Analysis in Single Cells. Anal Chem 2021; 93:4479-4487. [PMID: 33646748 PMCID: PMC8323477 DOI: 10.1021/acs.analchem.0c04624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Single-cell capillary electrophoresis mass spectrometry (CE-MS) is a promising platform to analyze cellular contents and probe cell heterogeneity. However, current single-cell CE-MS methods often rely on offline microsampling processes and may demonstrate low sampling precision and accuracy. We have recently developed an electrospray-assisted device, spray-capillary, for low-volume sample extraction. With the spray-capillary, low-volume samples (pL-nL) are drawn into the sampling end of the device, which can be used directly for CE separation and online MS detection. Here, we redesigned the spray-capillary by utilizing a capillary with a <15 μm tapered tip so that it can be directly inserted into single cells for sample collection and on-capillary CE-MS analysis. We evaluated the performance of the modified spray-capillary by performing single-cell microsampling on single onion cells with varying sample injection times and direct MS analysis or online CE-MS analysis. We have demonstrated, for the first time, online sample collection and CE-MS for the analysis of single cells. This application of the modified spray-capillary device facilitates the characterization and relative quantification of hundreds of metabolites in single cells.
Collapse
Affiliation(s)
- Lushuang Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kellye A Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, United States
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
6
|
Kartsova LA, Makeeva DV, Bessonova EA. Current Status of Capillary Electrophoresis. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820120084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. JOURNAL OF ANALYSIS AND TESTING 2020. [DOI: 10.1007/s41664-020-00126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Kristoff CJ, Bwanali L, Veltri LM, Gautam GP, Rutto PK, Newton EO, Holland LA. Challenging Bioanalyses with Capillary Electrophoresis. Anal Chem 2020; 92:49-66. [PMID: 31698907 PMCID: PMC6995690 DOI: 10.1021/acs.analchem.9b04718] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Courtney J. Kristoff
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Gayatri P. Gautam
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Patrick K. Rutto
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
9
|
Practical sample pretreatment techniques coupled with capillary electrophoresis for real samples in complex matrices. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|