1
|
Han SH, Huang DD, Cheng ZJ, Liu AL, Lei Y. Hydrogen peroxide enhanced glow-type chemiluminescence of hydrazine hydrate modified carbon quantum dots-potassium persulfate system. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124730. [PMID: 38943757 DOI: 10.1016/j.saa.2024.124730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Most known chemiluminescence (CL) systems are flash-type that generate weak luminescence and decline quickly after dozens of seconds, while the glow-type CL systems have stable emission for an extended period to achieve accurate quantitation. In this work, a long-term CL system based on hydrazine-hydrate (N2H4·H2O) modified carbon quantum dots (N-CQDs) as a luminescent probe, with K2S2O8 and H2O2 as co-reactants, was proposed. The CL emission enhanced by H2O2 increased 18-fold more than that of N-CQDs and K2S2O8 direct reaction, and decayed by 5% of the maximum intensity over 700 s. In the reaction system, K2S2O8 and H2O2 co-reactants can promote each other to continuously generate corresponding radicals (•OH, O2•-, 1O2), which in turn trigger the CL emission of N-CQDs. This phenomenon was identified as the primary cause for the production of persistent CL. In addition, a stable and selective CL sensor based on the N-CQDs-K2S2O8-H2O2 CL enhancing system was developed for ascorbic acid quantitation in the linear range from 0.1 to 10.0 mM with a detection limit of 0.036 mM. The method has been applied to the analysis of tablet samples and holds potential in pharmaceutical analysis field.
Collapse
Affiliation(s)
- Shu-Hua Han
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan-Dan Huang
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Zhang-Jian Cheng
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Ai-Lin Liu
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Yun Lei
- Department of Pharmaceutical Analysis, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
2
|
Tian Y, Lu X, Xiao D, Zhou C. Long-Lasting Chemiluminescence Based on Functionalized Multicolor Protein Capsules for Multiple Visualization Detection of Avian Influenza Virus Biomarkers. Anal Chem 2024; 96:16978-16984. [PMID: 39392770 DOI: 10.1021/acs.analchem.4c04248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Long-lasting chemiluminescence (CL) emissions are necessary for improving the detection accuracy and expanding the application scope. Here, we have synthesized three oil-in-water (O/W) multicolor protein capsules (LCBA, F/LCBA, and RB/F/LCBA) using a simple ultrasound method and have engineered specific target-triggered catalytic hairpin assembly on their surface and chemiluminescence resonance energy transfer inside. Consequently, three multicolor capsules exhibit excellent structural stability, generate blue-, green-, and red-colored emissions when reacting with H2O2, have long-lasting CL emission over 1 h, and successfully achieve the accurate multiple visualization detection of avian influenza virus subtype targets. Without the need for complex instruments and analysis procedures, the CL imaging assays can be carried out and recorded with a common smartphone. The detection limits for visualizing H1N1, H7N9, and H5N1 are 5.5, 7.6, and 9.0 pM, respectively. There is a linear range between 20.0 and 625 pM and excellent selectivity against interfering DNA. Furthermore, visualization detection has been successfully applied for the detection of H1N1, H7N9, and H5N1 in healthy human serum samples. With these merits, this facile, ultrasensitive, and multiple visualization sensor has potential applications in point-of-care testing and early diagnosis.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Tian Y, Zhang Y, Lu X, Xiao D, Zhou C. Microfluidic paper-based chemiluminescence sensing platform based on functionalized CaCO 3 for time-resolved multiplex detection of avian influenza virus biomarkers. Anal Biochem 2024; 693:115583. [PMID: 38838931 DOI: 10.1016/j.ab.2024.115583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Multiplex detection can enhance diagnostic precision and improve diagnostic efficiency, providing important assistance for epidemiological investigation and epidemic prevention. There is a great need for multi-detection sensing platforms to accurately diagnose diseases. Herein, we reported a μPAD-based chemiluminescence (CL) assay for ultrasensitive multiplex detection of AIV biomarkers, based on three DNAzyme/Lum/PEI/CaCO3. Three time-resolved CL signals were sequentially generated with detection limits of 0.32, 0.34, and 0.29 pM for H1N1, H7N9, and H5N1, respectively, and with excellent selectivity against interfering DNA. The recovery test in human serum displayed satisfactory analysis capabilities for complex biological samples. The μPAD-based CL assay achieved multiplex detection within 70 s, with a high time resolution of 20 s. The proposed strategy has the advantages of low cost, high sensitivity, good selectivity, and wide time resolution, the μPAD-based CL assay has shown great potential in the early and accurate diagnosis of diseases.
Collapse
Affiliation(s)
- Yafei Tian
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Yujiao Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Xueyun Lu
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
4
|
Lin Z, Cai C, Chen W, Deng Q, Yang J, Huang K, Deng H, Lin X, Chen W, Yao W. Micelle-mediated chemiluminescence of 6-aza-2-thiothymine-protected gold nanoclusters for carbazochrome sodium sulfonate detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123738. [PMID: 38086230 DOI: 10.1016/j.saa.2023.123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Chemiluminescence (CL) intensity of luminol-H2O2 system was dramatically enhanced by cetyltrimethylammonium bromide (CTAB) micelle-mediated 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs). It is proved that spherical micelles of CTAB in aqueous solution improved the dispersity of ATT-AuNCs, thus enhancing their catalytic activity, which brought in the increased CL intensity of luminol-H2O2 system. Carbazochrome sodium sulfonate (CSS) with a hemostatic containing tetrahydroindole structure broke the spherical micelles and notably quenched the CL intensity of luminol-H2O2-CTAB-ATT AuNCs system. Based on these results, a simple, fast, and sensitive CL method has been developed for the detection of CSS with a linear range of 0.25-25 μM and a detection limit of 0.11 μM. The method has also been successfully applied to the determination of CSS in serum with satisfied recoveries in the range of 89.6 % to 103.7 %. This study not only provides an effective approach for CSS detection but also paves the way for AuNCs-based CL applications.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Chuangui Cai
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Qian Deng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jialin Yang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Kaiyuan Huang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Haohua Deng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou 350122, China.
| | - Wensong Yao
- College of Medical Sciences, Ningde Normal University, Ningde 352100, China.
| |
Collapse
|
5
|
Qi Y, Xing Z, Xiu F, Wang Y, Gao X. Chemiluminescence sensing for Hg 2+ in environment water using carbon materials from PVC dechlorination as signal initiator. Anal Bioanal Chem 2024; 416:243-254. [PMID: 37910200 DOI: 10.1007/s00216-023-05012-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Chemiluminescence (CL) sensing with good performance remains a challenge. The utilization of secondary residues from polyvinyl chloride (PVC) treatment is the key to improve PVC recycling rate. Herein, dechlorinated carbon materials from PVC/iron scrap co-treatment in subcritical water were used as CL sensing element. It was found that tiny changes in the spatial structure of aptamer could cause huge changes in CL signal of the residue-luminol system. A CL biosensor was constructed for mercury in environment water for the first time. The detection limit was estimated to be 0.37 pM. High sensitivity was mainly due to strong CL triggering and signal amplification from residues and effective regulating residue activity by aptamer space dimension. For real water samples, the results by residue CL analysis were consistent with that by cold vapor atom adsorption spectroscopy (CVAAS). Most strikingly, the used material was secondary residues from the treatment of PVC waste, which reduced the time and energy consumption of CL sensing. This research proposed the approach for routine monitoring mercury in environment but also provided the reference for developing other environmentally beneficial analysis platforms.
Collapse
Affiliation(s)
- Yingying Qi
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Zefeng Xing
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Furong Xiu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Yuan Wang
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, China
| |
Collapse
|
6
|
Donnelly FC, Purcell-Milton F, Caffrey E, Branzi L, Stafford S, Alhammad FA, Cleary O, Ghariani M, Kuznetsova V, Gun’ko YK. Chiroptically Active Multi-Modal Calcium Carbonate-Based Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:100. [PMID: 38202555 PMCID: PMC10780737 DOI: 10.3390/nano14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The development of multimodal nano- and micro-structures has become an increasingly popular area of research in recent years. In particular, the combination of two or more desirable properties within a single structure opens multiple opportunities from biomedicine, sensing, and catalysis, to a variety of optical applications. Here, for the first time, we report the synthesis and characterization of multimodal chiroptically active CaCO3 nanocomposites. These composites have been prepared by a modified microemulsion method in the presence of an amino acid (cysteine). Following this, additional modalities have been introduced by loading the composites with luminescent nanoparticles or doping with Eu3+ ions. The luminescent composites have been produced by the incorporation of CuInZnS/ZnS or CdSe@ZnS/ZnS core/shell quantum dots, or via doping with trivalent europium. In this manner, we have produced chiroptically active composites with orange, green, and red luminescence. Overall, this work demonstrates the unique advantage and potential of our approach and new class of chiroptically active CaCO3 nanocomposites, which display tunable functionality to specific requirements via the incorporation of desired ions, nanoparticles, and chirality of the structure.
Collapse
Affiliation(s)
- Fearghal C. Donnelly
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 F438 Dublin, Ireland
| | - Finn Purcell-Milton
- Chemical & BioPharmaceutical Science, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Eoin Caffrey
- School of Physics, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lorenzo Branzi
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Shelley Stafford
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Faisal Ali Alhammad
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Olan Cleary
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Munirah Ghariani
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Vera Kuznetsova
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 F438 Dublin, Ireland
| |
Collapse
|
7
|
Qin X, Zhan Z, Zhang R, Chu K, Whitworth Z, Ding Z. Nitrogen- and sulfur-doped graphene quantum dots for chemiluminescence. NANOSCALE 2023; 15:3864-3871. [PMID: 36723371 DOI: 10.1039/d2nr07213k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Graphene quantum dots (GQDs), as one of the most promising luminescent nanomaterials, have been receiving increasing attention in various applications. However, it is still a challenge to improve their chemiluminescence (CL) quantum efficiency. Herein, the CL emissions of nitrogen- and sulfur-doped GQDs (NS-GQDs), nitrogen-doped GQDs (N-GQDs) and undoped GQDs synthesized through one-pot high-temperature pyrolysis are investigated in their chemical reactions with bis(2-carbopentyloxy-3,5,6-trichlorophenyl) oxalate (CPPO) and hydrogen peroxide (H2O2). A bright blue emission, and yellowish green and yellowish white light from NS-GQDs, N-GQDs and GQDs can be observed, respectively, in the mixture solutions with CPPO and H2O2. For the first time, spooling CL spectroscopy was used to investigate the CL reaction mechanisms, illuminant decays and the absolute CL efficiencies of these three GQD systems. Compared with the same system of undoped GQDs, it has been found that the NS-GQDs not only present slower illuminant decay, but also display an absolute CL quantum efficiency of 0.01%, 5-fold enhancement, due to the increase in N and S doping for a well-defined band gap energy. Moreover, three peak wavelengths attributed to intrinsic emission at 425 nm, aggregation-induced emission (AIE) at 575 nm and S-doped emissive surface states at 820 nm are observed for the first time in the NS-GQD system. The CL spectrum of N-GQDs displays two emission peaks at 395 and 575 nm attributed to intrinsic emission and AIE, whereas the CL spectrum of undoped GQDs demonstrates 500 nm and 600 nm peak wavelengths attributed to core emission and AIE. Absolute CL quantum efficiencies from these emissions at these various peaks can be determined quantitatively. This study provides guidance on tuning the surface states of GQD for more conducive injection of electrons and holes, facilitating the production of CL emission, which is beneficial for promoting the development of optical, bioassay and energy conversion applications.
Collapse
Affiliation(s)
- Xiaoli Qin
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Ziying Zhan
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.
| | - Ruizhong Zhang
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Kenneth Chu
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.
| | - Zackry Whitworth
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.
| | - Zhifeng Ding
- Department of Chemistry, Western University, London, Ontario N6A 5B7, Canada.
| |
Collapse
|
8
|
Chu K, Adsetts JR, Whitworth Z, Kumar S, Zysman-Colman E, Ding Z. Elucidation of an Aggregate Excited State in the Electrochemiluminescence and Chemiluminescence of a Thermally Activated Delayed Fluorescence (TADF) Emitter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2829-2837. [PMID: 36763045 PMCID: PMC9948541 DOI: 10.1021/acs.langmuir.2c03391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The electrochemistry, electrochemiluminescence (ECL), and chemiluminescence (CL) properties of a thermally activated delayed fluorescence (TADF) emitter 4,4'-(1,2-dihydroacenaphthylene-5,6-diyl)bis(N,N-diphenylaniline) (TPA-ace-TRZ) and three of its analogues were investigated. TPA-ace-TRZ exhibits both (a) delayed onset of ECL and (b) long-persistent luminescence, which we have attributed to the formation of an aggregate excited state in excimer or exciplex form. The evidence of this aggregate excited state was consistent across ECL annihilation and coreactant pathways as well as in CL. The absolute ECL efficiency of TPA-ace-TRZ using benzoyl peroxide (BPO) as a coreactant was found to be 0.028%, which was 9-fold stronger than the [Ru(bpy)3]2+/BPO reference coereactant system. Furthermore, the absolute CL quantum efficiency of TPA-ace-TRZ was determined to be 0.92%. The performance and flexibility of the TADF emitter TPA-ace-TRZ under these various emissive pathways are highly desirable toward applications in sensing, imaging, and light-emitting devices.
Collapse
Affiliation(s)
- Kenneth Chu
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| | | | - Zackry Whitworth
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| | - Shiv Kumar
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.
| | - Zhifeng Ding
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
9
|
Yang B, Shi L, Tang Q, Liu W, Li B, Yang C, Jin Y. Automated study on kinetics and biosensing of glow-type luminescence reaction via digital microfluidics-chemiluminescence. LAB ON A CHIP 2023; 23:785-792. [PMID: 36723360 DOI: 10.1039/d2lc01153k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Automated manipulation of discrete droplets by digital microfluidics (DMF) combined with chemiluminescence (CL) is promising to achieve automated and sensitive biosensing and bioanalysis. Herein, a DMF-CL device was built to automatically study CL kinetics and biosensing of a glow-type CL reaction. Copper-cysteine nanoparticles (Cu/CysNP) were synthesized as a new CL catalyst to extend the CL reaction of luminol-H2O2 to more than 10 min. The automated manipulation of droplets reduced reagent costs and manual errors, leading to real-time, automated, and reliable study of CL kinetics. The CL kinetics curve collected by the DMF-CL integration device is in accordance with that of a commercial CL analyser. The long-lasting luminescence ensured automated, sensitive, and reliable detection of H2O2 as a direct or indirect analyte of the cascade catalytic reaction. Moreover, an innovative asymmetrical splitting method is proposed to quickly and precisely generate daughter droplets to ensure uniformity of the droplets and good repeatability of the DMF-CL measurements. Therefore, the DMF-CL analysis holds great potential for achieving online and automatic analysis and biosensing.
Collapse
Affiliation(s)
- Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
Yang R, Ren Y, Dong W. A novel enzyme-free long-lasting chemiluminescence system based on a luminol functionalized β-cyclodextrin hydrogel for sensitive detection of H 2O 2 in urine and cells. J Mater Chem B 2023; 11:1320-1330. [PMID: 36655431 DOI: 10.1039/d2tb01813f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel long-lasting chemiluminescent (CL) hydrogel (β-CD@luminol-Co2+) was synthesized by embedding luminol and cobalt ions (Co2+) into β-cyclodextrin (β-CD) through non-covalent interactions. Due to its porous structure and viscosity, the synthesized β-CD@luminol-Co2+ hydrogel exhibited long-lasting CL properties and can emit light for 12 h under both alkaline and neutral conditions. In addition, the CL intensities of β-CD@luminol-Co2+ were linear with the logarithm of the hydrogen peroxide (H2O2) concentration in the range of 1.0 × 10-11-1.0 × 10-7 M, and the limit of detection (LOD) was 0.63 × 10-11 M and 0.85 × 10-11 M under alkaline and neutral conditions, respectively. On this basis, an enzyme-free CL sensor based on β-CD@luminol-Co2+ was fabricated for the sensitive detection of H2O2 in human urine samples under alkaline conditions, and showed good accuracy and recovery. Since β-CD@luminol-Co2+ showed good CL properties under neutral conditions, it can be applied to detect H2O2 in cells. In order to prolong the emission wavelength of β-CD@luminol-Co2+ for better cell imaging, β-CD@luminol-FL-Co2+ was prepared by adding fluorescein (FL) to β-CD@luminol-Co2+. The as-prepared β-CD@luminol-FL-Co2+ also displayed long-lasting CL properties and showed a linear relationship with H2O2 concentrations. In addition, the maximum emission wavelength of β-CD@luminol-FL-Co2+ was 520 nm, which was red-shifted by 95 nm compared with β-CD@luminol-Co2+. The methyl thiazolyl tetrazolium (MTT) assay results and confocal microscopy images illustrated that β-CD@luminol-FL-Co2+ had low toxicity and can be taken up by A549 cells. Finally, β-CD@luminol-FL-Co2+ was successfully applied for CL imaging and detection of intracellular H2O2 in A549 cells under neutral conditions. This enzyme-free long-lasting CL system with high sensitivity can also be extended to real-time monitoring of H2O2in vivo.
Collapse
Affiliation(s)
- Rui Yang
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| | - Yueran Ren
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| | - Wenxuan Dong
- School of Pharmacy, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
11
|
Qi P, Jia L, Yi M, Zhao E, Liu Y, Song A, Hao J. Chemiluminescent gels of G-quadruplexes in deep eutectic solvents. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Ouyang H, Yuan H, Huang J, Xian J, Wang W, Fu Z. CoN4-supported Co2N metal clusters for developing sensitive chemiluminescent immunochromatographic assays. Anal Chim Acta 2022; 1232:340478. [DOI: 10.1016/j.aca.2022.340478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/01/2022]
|
13
|
Fu L, Zhang B, Gao X, Dong S, Wang D, Zou G. A General Route for Chemiluminescence of n-Type Au Nanocrystals. Anal Chem 2022; 94:8811-8817. [PMID: 35675670 DOI: 10.1021/acs.analchem.2c01770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The photoluminescence, electroluminescence, and electrochemiluminescence from nanocrystals (NCs) have been extensively exploited for both fundamental and applied investigation over two decades, while the understanding of chemiluminescence (CL) from NCs is still far from clear by now. Herein, a general route for triggering CL from NC luminophore is proposed by extensively exploiting the charge transfer between n-type NCs and oxidants. Oxidants, such as K2S2O8, H2O2, KMnO4, and NaClO, can chemically inject the hole onto the valence band (VB) of methionine-capped n-type AuNCs (Met@AuNCs) and enable the occurrence of efficient radiative-charge-recombination between the chemically injected exogenous VB hole and the pre-existed endogenous conduction band (CB) electron, which eventually results in single-color and defect-involved CL with the maximum emission wavelength around 824 nm. The CL of Met@AuNCs/oxidant is qualified for ultrasensitive CL immunoassay in a similar procedure to the biotin-avidin and magnetic separation involved commercial CL immunoassay and exhibits acceptable performance for linearly determining carcinoembryonic antigen from 50 pg/mL to 100 ng/mL with a limit of detection of 10 pg/mL (S/N = 3). This strategy provides a general route to develop nanoparticulate CL luminophores and might eventually enable CL multiplexing assay via extensively exploiting the CL of different wavebands.
Collapse
Affiliation(s)
- Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongyang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Chen X, Wang X, Fang Y, Zhang L, Zhao M, Liu Y. Long-Lasting Chemiluminescence-Based POCT for Portable and Visual Pathogenic Detection and In Situ Inactivation. Anal Chem 2022; 94:8382-8391. [PMID: 35647701 DOI: 10.1021/acs.analchem.2c00877] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections seriously threaten human health and also bring huge financial burden. It is critical to construct multifunctional platforms for effectively inactivating bacteria right after point-of-care testing (POCT). Chemiluminescence (CL) bioassays are considered as powerful candidates for POCT as they are free from using an excitation light source, while the flash-type emission limits their further application. Herein, a CL system with long, persistent, and intensive intensity was constructed based on the peroxidase-like property of 4-mercaptophenylboronic acid (MPBA)-functionalized CuSe nanoprobes (CuSeNPs@MPBA), which improved the detection accuracy and sensitivity. By further integrating a smartphone as an analyzer, quantitative POCT of bacteria was realized with high sensitivity. The limit of detection was as low as 1.25 and 1.01 cfu mL-1 for Staphylococcus aureus and Escherichia coli detection, respectively. Specifically, bacteria can be eliminated with high efficiency due to excellent photothermal property of CuSeNPs@MPBA. The developed multifunctional platform also has advantages of simple operation with low cost, suggesting its high potential for use in food safety, environment monitoring, and clinical applications.
Collapse
Affiliation(s)
- Xiying Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaomin Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Liule Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minyang Zhao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
15
|
Dong S, Wang D, Gao X, Fu L, Jia J, Xu Y, Zhang B, Zou G. Glow and Flash Adjustable Chemiluminescence with Tunable Waveband from the Same CuInS 2@ZnS Nanocrystal Luminophore. Anal Chem 2022; 94:6902-6908. [PMID: 35486816 DOI: 10.1021/acs.analchem.2c01083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
All commercial chemiluminescence (CL) assays are conducted with either glow or flash CL of eye-visible waveband from chemical luminophores. Herein, glow and flash, as well as waveband adjustable CL from the same nanoparticle luminophore of thiol-capped CuInS2@ZnS nanocrystals (CIS@ZnS-Thiol), are proposed via extensively exploiting the differed redox nature of CL triggering reagents. Taking thiosalicylic acid (TSA) as the model thiol-capping agent, the electron-injection-initiated charge transfer between CIS@ZnS-TSA and reductant can bring out efficient glow CL while the hole-injection-initiated charge transfer between CIS@ZnS-TSA and oxidant can give off obvious flash CL under optimum conditions. The maximum emission wavelength for CL of CIS@ZnS-TSA is adjustable from 730 nm to 823 nm via employing different triggering agents. Promisingly, the coexistent reductant of N2H4·H2O and oxidant of H2O2 can be employed as dual triggering reagents to trigger eye-visible and highly efficient flash CL from CIS@ZnS-TSA. The maximum emission intensity for flash CL of CIS@ZnS-TSA/N2H4-H2O2 is 101-fold greater than the glow CL of CIS@ZnS-TSA/N2H4 and 22-fold greater than the flash CL of CIS@ZnS-TSA/H2O2, respectively. The flash CL from CIS@ZnS-TSA/N2H4-H2O2 is qualified for highly sensitive and selective CL immunoassay in a commercialized typical procedure with the entire operating process manually terminated within 35 min.
Collapse
Affiliation(s)
- Shuangtian Dong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dongyang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xuwen Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Li Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jingna Jia
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuqi Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Bin Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Guizheng Zou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
16
|
Jia Y, Zhao S, Qu Q, Yang L. Nano-channel confined biomimetic nanozyme/bioenzyme cascade reaction for long-lasting and intensive chemiluminescence. Biosens Bioelectron 2022; 202:114020. [DOI: 10.1016/j.bios.2022.114020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/27/2021] [Accepted: 01/17/2022] [Indexed: 01/09/2023]
|
17
|
Zhou X, Fan C, Tian Q, Han C, Yin Z, Dong Z, Bi S. Trimetallic AuPtCo Nanopolyhedrons with Peroxidase- and Catalase-Like Catalytic Activity for Glow-Type Chemiluminescence Bioanalysis. Anal Chem 2021; 94:847-855. [PMID: 34927417 DOI: 10.1021/acs.analchem.1c03572] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemiluminescence (CL) with stable and glowing light emission is vital for the accurate detection of biomarkers. Moreover, the catalyst plays an important role in CL systems. Herein, the trimetallic AuPtCo nanopolyhedrons with peroxidase- and catalase-like catalytic activities are readily synthesized via a one-step reduction method. After reaction with the substrate ABEI and oxidant H2O2, the AuPtCo nanozyme can catalyze the CL emission in a flash type. Interestingly, it has been found that the biofunctionalization of the AuPtCo surface can endow the catalytic interface with a slow-diffusion effect, thereby prolonging the emission of glow-type CL. On this basis, two biofunctionalized AuPtCo nanocomposites, named as AuPtCo@Cys and AuPtCo@Ab, are prepared, achieving sensitive and selective detection of H2O2 and lipoprotein-associated phospholipase A2 (Lp-PLA2), respectively. Further, the proposed glow-type CL assays are successfully applied for the determination of H2O2 and Lp-PLA2 in female vaginal discharge and human serum samples, respectively, which exhibit good correlation with the clinical results. Overall, the trimetallic AuPtCo nanozyme-based glow-type CL analysis has demonstrated as a powerful and robust tool for biomarker analysis, which holds great promise in clinical applications.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266101, P. R. China.,College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, P. R. China
| | - Chun Fan
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao 266101, P. R. China
| | - Qingwu Tian
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266101, P. R. China
| | - Chunhua Han
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266101, P. R. China
| | - Ziqiang Yin
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266101, P. R. China
| | - Zengyi Dong
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266101, P. R. China
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Laboratory of Fiber Materials and Modern Textiles, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071, P. R. China.,Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, P. R. China
| |
Collapse
|
18
|
Lv C, Guo X, Hou Y, Liu W, Guo Y, Zhang Z, Jin Y, Li B. Long-Lasting Luminol Chemiluminescence Emission with 1,10-Phenanthroline-2,9-dicarboxylic Acid Copper(II) Complex on Paper. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53787-53797. [PMID: 34726366 DOI: 10.1021/acsami.1c14563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As most of the known systems are flashtype, long-lasting chemiluminescence (CL) emissions are extremely needed for the application of cold light sources, accurate CL quantitative analysis, and biological mapping. In this work, the flashtype system of luminol was altered to a long lasting CL system just because of the paper substrate. The Cu(II)-based organic complex was loaded on the paper surface, which can trigger luminol-H2O2 to produce a long lasting CL emission for over 30 min. By using 1,10-phenanthroline-2,9-dicarboxylic acid (PDA) as the ligand, a hexacoordinated Cu(II)-based organic complex was synthesized by the simple freeze-drying method. It is interesting that the complex morphology can be controlled by adding different amounts of water in the synthesizing procedure. The complex with a certain size can be definitely trapped in the pores of the cellulose. Then, slow diffusion, which can be attributed to the long lasting CL emission, was produced. With the high catalytic activity of the complex, reactive oxygen species from H2O2 was generated and was responsible for the high CL intensity. By using the paper substrate, the flash-type luminol system can be easily transferred to the long-duration CL system without any extra reagent. This long-lasting emission system was used for hydrogen sulfide detection by the CL imaging method. This paper-based sensor has great potential for CL imaging in the clinical field in the future.
Collapse
Affiliation(s)
- Congcong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xiaoyan Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yanli Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zixuan Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
19
|
Lian M, Liu M, Zhang X, Zhang W, Zhao J, Zhou X, Chen D. Template-Regulated Bimetallic Sulfide Nanozymes with High Specificity and Activity for Visual Colorimetric Detection of Cellular H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53599-53609. [PMID: 34726914 DOI: 10.1021/acsami.1c15839] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For the past several decades, most of the research studies on nanozymes have been aimed at improving their catalytic activity and diversity; however, developing nanozymes with strong catalytic activity and great specificity remains a challenge. Herein, a simple and efficient template synthesis method was used to synthesize bimetallic sulfide nanoparticles, NiCo2S4 NPs, and prove that they have excellent peroxidase-like activity with good specificity. By regulating polyvinyl pyrrolidone (PVP) and hexadecyl trimethyl ammonium bromide as the templating agent, we have obtained the NiCo2S4 (PVP) NPs with a high Ni/Co ratio, thus exhibiting superior peroxidase activity. In addition, the NiCo2S4 NPs selectively catalyzed and oxidized colorless 3,3,5,5-tetramethylbenzidine (TMB). On being treated with H2O2, TMB turns blue while other substrates did not undergo the oxidation reaction under the same conditions, such as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium (ABTS) and dopamine. The high specificity of NiCo2S4 NPs is due to the strong electrostatic driving coordination between negatively charged NiCo2S4 NPs and positively charged TMB. Due to the peroxidase activity of the developed NiCo2S4 NPs, a simple, low-cost, and reliable colorimetric method was established. Simultaneously, this method for in situ quantitative monitoring of H2O2 produced by MDA-MB-231 cells was also achieved. This study has provided a theoretical basis for the improvement of the activity and specificity of bimetallic sulfide nanozymes and may offer guidance for the further reasonable design of related materials.
Collapse
Affiliation(s)
- Meiling Lian
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Meihan Liu
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiao Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Wei Zhang
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Jingbo Zhao
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Xiaomeng Zhou
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| | - Da Chen
- Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
20
|
Wang S, Shu J, Lyu A, Huang X, Zeng W, Jin T, Cui H. Label-Free Immunoassay for Sensitive and Rapid Detection of the SARS-CoV-2 Antigen Based on Functionalized Magnetic Nanobeads with Chemiluminescence and Immunoactivity. Anal Chem 2021; 93:14238-14246. [PMID: 34636246 PMCID: PMC8524964 DOI: 10.1021/acs.analchem.1c03208] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Direct detection of SARS-CoV-2 in biological specimens is often challenging due to the low abundance of viral components and lack of enough sensitivity. Herein, we developed a new type of chemiluminescent functionalized magnetic nanomaterial for sensitive detection of the SARS-CoV-2 antigen. First, HAuCl4 was reduced by N-(aminobutyl)-N-(ethylisoluminol) (ABEI) in the presence of amino magnetic beads (MB-NH2) to generate ABEI-AuNPs, which were directly assembled on the surface of MB-NH2. Then, Co2+ was modified onto the surface to form MB@ABEI-Au/Co2+ (MAA/Co2+). MAA/Co2+ exhibited good chemiluminescence (CL) and magnetic properties. It was also found that it was easy for the antibody to be connected with MAA/Co2+. Accordingly, MAA/Co2+ was used as a sensing interface to construct a label-free immunoassay for rapid detection of the N protein in SARS-CoV-2. The immunoassay showed a linear range from 0.1 pg/mL to 10 ng/mL and a low detection limit of 69 fg/mL, which was superior to previously reported methods for N protein detection. It also demonstrated good selectivity by virtue of magnetic separation, which effectively removed a sample matrix after immunoreactions. It was successfully applied for the detection of the N protein in spiked human serum and saliva samples. Furthermore, the immunoassay was integrated with an automatic CL analyzer with magnetic separation to detect the N protein in patient serums and rehabilitation patient serums with satisfactory results. Thus, the CL immunoassay without a complicated labeling procedure is sensitive, selective, fast, simple, and cost-effective, which may be used to combat the COVID-19 pandemic. Finally, the CL quenching mechanism of the N protein in the immunoassay was also explored.
Collapse
Affiliation(s)
- Shanshan Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiangnan Shu
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Aihua Lyu
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoxue Huang
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Weihong Zeng
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Tengchuan Jin
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hua Cui
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Ning Y, Lu F, Liu Y, Yang S, Wang F, Ji X, He Z. Glow-type chemiluminescent hydrogels for point-of-care testing (POCT) of cholesterol. Analyst 2021; 146:4775-4780. [PMID: 34231558 DOI: 10.1039/d1an00676b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cholesterol is an essential compound for human health, and a high or low concentration of cholesterol is closely related to various diseases. Thus, developing a simple method for POCT of cholesterol has great significance in clinical diagnosis. In this work, alginate (Alg) hydrogels with glow-type chemiluminescence (CL) were prepared and applied for rapid and quantitative cholesterol detection via a smartphone. The glow-type CL hydrogels (HRP/COD/luminol/Alg hydrogels) contained luminol as a chemiluminescent reagent, horseradish peroxidase (HRP) and cholesterol oxidase (COD) for enzymatic cascade reactions. The HRP/COD/luminol/Alg hydrogels exhibited outstanding stability, which effectively avoided the enzyme inactivation during long-term storage. Furthermore, the HRP/COD/luminol/Alg hydrogels exhibited longer and more stable glow-type CL. With the help of COD catalytic specificity for cholesterol and bi-enzymatic cascade reactions, the glow-type CL hydrogels realized the specific and sensitive detection of cholesterol. The smartphone was used as a detector instead of a special large instrument for responding to the glow-type CL emission, and a LOD of 7.2 μM was obtained. Therefore, the proposed sensor expands the application of the glow-type CL in POCT and provides an alternative way for cholesterol detection in clinical diagnosis.
Collapse
Affiliation(s)
- Yu Ning
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Dong B, Fan Q, Li M, Huan Y, Feng G, Shan H, Fei Q. Determination of tyrosine by sodium fluorescein-enhanced ABEI–H2O2–horseradish peroxidase chemiluminescence. J Anal Sci Technol 2021. [DOI: 10.1186/s40543-021-00272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this study, N-(4-aminobutyl)-N-ethylisoluminol (ABEI) was used as an energy donor, while sodium fluorescein was used as an enhancer and energy acceptor, which resulted in it producing resonance energy transfer and greatly increasing the strength of chemiluminiscence (CL). When horseradish peroxidase (HRP) is added, hydrogen peroxide (H2O2) will quickly separate into hydroxyl radicals (·OH) and superoxide ions (O2·−). If tyrosine (Tyr) is present in the system, the hydroxyl group on the benzene ring of Tyr robs ·OH and O2·− in the CL system, thereby reducing the intensity of CL. Based on this phenomenon, a luminescence system of ABEI and sodium fluorescein system was established to detect Tyr for the first time. This method has an ultra-low detection limit and a wide linear range, and is cheap and easy to operate. Under various optimal conditions, the linear range is from 3.0×10−8 to 3.0×10−5 mol/L, and the limit of detection is 2.4×10−8 mol/L. It has been successfully used in the detection of dairy products with satisfactory results.
Collapse
|
23
|
Yang CP, He L, Huang CZ, Li YF, Zhen SJ. Continuous singlet oxygen generation for persistent chemiluminescence in Cu-MOFs-based catalytic system. Talanta 2021; 221:121498. [DOI: 10.1016/j.talanta.2020.121498] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022]
|
24
|
Wu H, Zhao M, Li J, Zhou X, Yang T, Zhao D, Liu P, Ju H, Cheng W, Ding S. Novel Protease-Free Long-Lasting Chemiluminescence System Based on the Dox-ABEI Chimeric Magnetic DNA Hydrogel for Ultrasensitive Immunoassay. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47270-47277. [PMID: 32975407 DOI: 10.1021/acsami.0c14188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Most of chemiluminescence (CL) substrates exhibit the flash-type light emission. Therefore, the long-lasting CL system is always the crown in the field of CL-based analysis methodology. In this work, we constructed a Dox-ABEI chimeric magnetic DNA hydrogel (MDH) as a novel protease-free long-lasting CL reaction system. The functional MDH can transform flash-type ABEI/H2O2/CO2+ reaction into a glow-type CL system because of its block effect on delaying the diffusion rate of co-reactants, making the CL reaction gradually occur. More importantly, the functional MDH possessed the advantages of biocompatibility and controllability and could be well-designed to incorporate different biosensing strategies. Subsequently, we established a functional MDH-based long-lasting CL immunoassay system for ultrasensitive and highly specific detection of d-dimer and fibrin degradation products (FDPs). The designed CL immunoassay can detect d-dimer and FDP down to 53.7 and 31.6 fg/mL, respectively, with a wide line ranging from 100 fg/mL to 100 ng/mL, which was superior to the previously reported CL biosensing strategies. Moreover, benefiting from the magnetic separation of MDH and excellent CL performance, the developed immunoassaying method was successfully applied in the detection of clinical samples, which showed a close correlation with clinical reference technology. Thus, this functional MDH proved to be an excellent long-lasting CL system and a potential technical platform for clinical bioanalysis applications.
Collapse
Affiliation(s)
- Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Min Zhao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jia Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Zhou
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dezhang Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ping Liu
- Bioscience (Tianjin) Diagnostic Technology CO., LTD., Tianjin 300399, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
25
|
Sun X, Lei J, Jin Y, Li B. Long-Lasting and Intense Chemiluminescence of Luminol Triggered by Oxidized g-C 3N 4 Nanosheets. Anal Chem 2020; 92:11860-11868. [PMID: 32786482 DOI: 10.1021/acs.analchem.0c02221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Most of the known chemiluminescence (CL) systems are flash-type, whereas a CL system with long-lasting and strong emission is very favorable for accurate CL quantitative analysis and imaging assays. In this work, we found that the oxidized g-C3N4 (g-CNOX) could trigger luminol-H2O2 to produce a long-lasting and intense CL emission. The CL emission lasted for over 10 min and could be observed by the naked eye in a dark room. By means of a CL spectrum, X-ray photoelectron spectra, and electron spin resonance spectra, the possible mechanism of this CL reaction was proposed. This strong and long-duration CL emission was attributed to the high catalytic activity of g-CNOX nanosheets and continuous generation of reactive oxygen species from H2O2 on g-CNOX surface. Taking full advantage of the long-lasting CL property of this system, we proposed one "non-in-situ mixing" mode of CL measurement. Compared with the traditional "in-situ mixing" CL measurement mode, this measurement mode was convenient to operate and had good reproducibility. This work not only provides a long-lasting CL reaction but also deepens the understanding of the structure and properties of g-C3N4 material.
Collapse
Affiliation(s)
- Xiaoqing Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
26
|
Dang P, Liu X, Ju H, Wu J. Intensive and Persistent Chemiluminescence System Based on Nano-/Bioenzymes with Local Tandem Catalysis and Surface Diffusion. Anal Chem 2020; 92:5517-5523. [PMID: 32195577 DOI: 10.1021/acs.analchem.0c00337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A chemiluminescence (CL) system with long persistent and intensive emission is essential for accurate CL quantitative analysis and imaging assay. However, with most known CL systems being flash-type, it is still a great challenge to develop long-lasting CL systems. Here, by combining an iron porphyrin metal-organic frameworks (FePorMOFs) based peroxidase mimic with natural glucose oxidase (GOx), an intensive and persistent CL system is presented on the basis of local tandem catalysis and surface diffusion of the nano-/bioenzymes (FePorMOF/GOx). FePorMOF synthesized by iron porphyrin linker and zirconium ion node possesses high peroxidase catalytic activity and stability. Using luminol and glucose as substrate, the FePorMOF/GOx CL system can produce intensive CL emission containing a plateau period of 7.5 h. The strong CL signal is due to the local tandem generation and reaction of H2O2 by GOx and FePorMOF, which avoids the diffusion-limited kinetics and leads to a high catalytic efficiency of the nano-/bioenzymes. On the other hand, the long persistent CL emission is attributed mainly to the enzymatic reaction-controlled H2O2 supply and surface diffusion-controlled CL reaction. The proposed CL system is explored for CL imaging sensing of glucose and homogeneous immunoassay of α-fetoprotein. The nano-/bioenzymes CL system exhibits intensive and long constant CL emission in physiological condition, showing promising applications in real-time bioassay and bioimaging.
Collapse
Affiliation(s)
- Pengyun Dang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xuan Liu
- Medical Laboratory Center, The Second Hospital of Nanjing, Nanjing 210003, People's Republic of China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
27
|
Mi L, Sun Y, Shi L, Li T. Hemin-Bridged MOF Interface with Double Amplification of G-Quadruplex Payload and DNAzyme Catalysis: Ultrasensitive Lasting Chemiluminescence MicroRNA Imaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7879-7887. [PMID: 31983198 DOI: 10.1021/acsami.9b18053] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we report a double-amplified sensing platform for ultrasensitive chemiluminescence (CL) miRNA detection in real patients' blood in which a hemin-bridged metal-organic framework (MOF) is employed as a functional interface to boost the payload and catalysis of G-quadruplex (G4) DNAzymes. Hemin is here used as the organic ligand for the MOF synthesis, which endows the MOF with an intrinsic peroxidase-like catalytic activity. Most importantly, the MOF surface provides a large amount of binding sites for polymeric G4 DNAzymes that are produced by miRNA-triggered rolling circle amplification reactions, and meanwhile, the interfaced G4 DNAzymes on MOFs (G4/MOFzymes) display an about 100-fold higher catalytic activity than those in solution. By using the G4/MOFzyme catalysts in the luminol/H2O2 CL system, the amplification detection of two acute myocardial infarction (AMI)-related miRNAs (low to 1 fM seen with naked eyes) is achieved in human serum with a smartphone as a portable imaging detector, which provides a facile methodology for point-of-care (POC) diagnosis of AMI. Compared with previous smartphone-based counterparts not requiring sophisticated equipment, this new facile methodology shows both 6 orders of magnitude higher sensitivity and an ∼50-fold longer duration for CL miRNA imaging. These unique features allow our developed G4/MOFzymes to be further employed as a novel luminescent ink for printing commonly used patterns.
Collapse
Affiliation(s)
- Lan Mi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yudie Sun
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lin Shi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
28
|
Zhang Y, Cui G, Qin N, Yu X, Zhang H, Jia X, Li X, Zhang X, Hun X. An assay for Staphylococcus aureus based on a self-catalytic ampicillin–metal (Fe3+)-organic gels–H2O2 chemiluminescence system with near-zero background noise. Chem Commun (Camb) 2020; 56:3421-3424. [DOI: 10.1039/c9cc09166a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A self-catalytic ampicillin–metal (Fe3+)-organic gels (AMP–MOGs (Fe))–H2O2 CL system, which is not influenced by transition metal ions, was studied.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Gaoxi Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Nana Qin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xijuan Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Hui Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| | - Xiaohua Li
- School of Chemistry and Environmental Engineering
- Shanxi Datong University
- Shanxi 037009
- China
| | - Xuzhi Zhang
- Yellow Sea Fisheries Research Institute
- Chinese Academy of Fishery Sciences
- Laboratory for Marine Fisheries Science and Food Production Processes
- Qingdao National Laboratory for Marine Science and Technology
- Qingdao 266071
| | - Xu Hun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science
- MOE
- Shandong Key Laboratory of Biochemical Analysis
- Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong
- College of Marine Science and Biological Engineering
| |
Collapse
|