1
|
Feng Y, Liu S, Yao Y, Chen M, Liu Q, Chen X. Endogenous mRNA-Powered and Spatial Confinement-Derived DNA Nanomachines for Ultrarapid and Sensitive Imaging of Let-7a. Anal Chem 2024; 96:564-571. [PMID: 38112715 DOI: 10.1021/acs.analchem.3c04837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
DNA nanostructure-based signal amplifiers offer new tools for imaging intracellular miRNA. However, the inadequate kinetics and susceptibility to enzymatic hydrolysis of these amplifiers, combined with a deficient cofactor concentration within the intracellular environment, significantly undermine their operational efficiency. In this study, we address these challenges by encapsulating a localized target strand displacement assembly (L-SD) and a toehold-exchange endogenous-powered component (R-mRNA) within a framework nucleic acid (FNA) structure─20 bp cubic DNA nanocage (termed RL-cube). This design enables the construction of an endogenous-powered and spatial-confinement DNA nanomachine for ratiometric fluorescence imaging of intracellular miRNA Let-7a. The R-mRNA is designed to be specifically triggered by glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an abundant cellular enzyme, and concurrently releases a component that can recycle the target Let-7a. Meanwhile, L-SD reacts with Let-7a to release a stem-loop beacon, generating a FRET signal. The spatial confinement provided by the framework, combined with the ample intracellular supply of GAPDH, imparts remarkable sensitivity (7.57 pM), selectivity, stability, biocompatibility, and attractive dynamic performance (2240-fold local concentration, approximately four times reaction rate, and a response time of approximately 7 min) to the nanomachine-based biosensor. Consequently, this study introduces a potent sensing approach for detecting nucleic acid biomarkers with significant potential for application in clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yinghui Feng
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Shenghong Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Yao Yao
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Miao Chen
- College of Life Science, Central South University, Changsha 410083, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China
- Xiangjiang Laboratory, Changsha 410205, Hunan, China
| |
Collapse
|
2
|
Yu Y, Zhang J, Zhan Y, Luo G. A novel method for detecting nine hotspot mutations of deafness genes in one tube. Sci Rep 2024; 14:454. [PMID: 38172427 PMCID: PMC10764868 DOI: 10.1038/s41598-023-50928-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
Deafness is a common sensory disorder. In China, approximately 70% of hereditary deafness originates from four common deafness-causing genes: GJB2, SLC26A4, GJB3, and MT-RNR1. A single-tube rapid detection method based on 2D-PCR technology was established for nine mutation sites in the aforementioned genes, and Sanger sequencing was used to verify its reliability and accuracy. The frequency of hotspot mutations in deafness genes was analysed in 116 deaf students. 2D-PCR identified 27 genotypes of nine loci according to the melting curve of the FAM, HEX, and Alexa568 fluorescence channels. Of the 116 deaf patients, 12.9% (15/116) carried SLC26A4 mutations, including c.919-2A > G and c.2168A > G (allele frequencies, 7.3% and 2.2%, respectively). The positivity rate (29.3%; 34/116) was highest for GJB2 (allele frequency, 15.9% for c.235delC, 6.0% for c.299_300delAT, and 2.6% for c.176-191del16). Sanger sequencing confirmed the consistency of results between the detection methods based on 2D-PCR and DNA sequencing. Common pathogenic mutations in patients with non-syndromic deafness in Changzhou were concentrated in GJB2 (c.235delC, c.299_300delAT, and c.176-191del16) and SLC26A4 (c.919-2A > G and c.2168 A > G). 2D-PCR is an effective method for accurately and rapidly identifying deafness-related genotypes using a single-tube reaction, and is superior to DNA sequencing, which has a high cost and long cycle.
Collapse
Affiliation(s)
- Yang Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Jun Zhang
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Yuxia Zhan
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China
| | - Guanghua Luo
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, People's Republic of China.
| |
Collapse
|
3
|
Zhu X, Luo G, Zheng L. Update on HLA-B*15:02 allele associated with adverse drug reactions. Pharmacogenomics 2024; 25:97-111. [PMID: 38305022 DOI: 10.2217/pgs-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
HLA alleles, part of the major histocompatibility complex, are strongly associated with adverse drug reactions (ADRs). This review focuses on HLA-B*15:02 and explores its association with ADRs in various ethnic populations and with different drugs, aiming to provide insights into the safe clinical use of drugs and minimize the occurrence of ADRs. Furthermore, the review explores the potential mechanisms by which HLA-B*15:02 may be associated with ADRs, aiming to gain new insights into drug modification and identification of haptens. In addition, it analyzes the frequency of the HLA-B*15:02, genotyping methods, cost-effectiveness and treatment measures for adverse reactions, thereby providing a theoretical basis for formulating clinical treatment plans.
Collapse
Affiliation(s)
- Xueting Zhu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
4
|
Zhu X, Yu Y, Zhang J, Zhan Y, Luo G, Zheng L. Accurate identification of HLA-B*15:02 allele by two-dimensional polymerase chain reaction. Clin Chim Acta 2024; 552:117654. [PMID: 37972805 DOI: 10.1016/j.cca.2023.117654] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND HLA-B*15:02 is highly associated with carbamazepine-induced SJS/TEN; however, there is no rapid and accurate detecting method. Here, we present a method to distinguish HLA-B*15:02 from 16 highly homologous HLA-B*15 alleles. METHODS The high-throughput two-dimensional polymerase chain reaction (2D-PCR) technology was employed to identify HLA-B*15:02 in two-tube reaction. And, 2D-PCR accuracy was verified by PCR-sequence based typing (PCR-SBT). RESULTS HLA-B*15:02 heterozygotes were identified by 14 melting valleys in the first tube reaction and none in the second, or by 13 melting valleys in the first tube reaction and one in the second. HLA-B*15:02 homozygote was identified by 13 melting valleys in the first tube reaction and none in the second. Three (0.16%) HLA-B*15:02 homozygotes and 84 (4.59%) HLA-B*15:02 heterozygotes were detected in 1830 samples of clinical general population without detecting 16 highly homologous alleles to HLA-B*15:02. The kappa test showed 100% coincidence between the 2D-PCR and PCR-SBT. CONCLUSIONS 2D-PCR in two-tube reaction method for identifying HLA-B*15:02 was successfully established. Identification of HLA-B*15:02 is necessary prior to taking CBZ based on HLA-B*15:02 allele frequency.
Collapse
Affiliation(s)
- Xueting Zhu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yang Yu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jun Zhang
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yuxia Zhan
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
5
|
Li DY, Jiang YJ, Nie KH, Li J, Li YF, Huang CZ, Li CM. Rational design of genotyping nanodevice for HPV subtype distinction. Anal Chim Acta 2023; 1276:341651. [PMID: 37573127 DOI: 10.1016/j.aca.2023.341651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
There are more than 200 subtypes of human papillomavirus (HPV), and high-risk HPVs are a leading cause of cervical cancer. Identifying the genotypes of HPV is significant for clinical diagnosis and cancer control. Herein, we used programmable and modified DNA as the backbone to construct fluorescent genotyping nanodevice for HPV subtype distinction. In our strategy, the dye-labeled single-stranded recognize-DNA (R-DNA) was hybridized with Black Hole Quencher (BHQ) labeled single-stranded link-DNA (L-DNA) to form three functionalized DNA (RL-DNA). Through the extension of polycytosine (poly-C) in L-DNA, three RL-DNAs can be more firmly adsorbed on graphene oxide to construct reliable genotyping nanodevice. The genotyping nanodevice had low background noise since the dual energy transfer, including Förster resonance energy transfer (FRET) from dye to BHQ and the resonance energy transfer (RET) from dye to graphene oxide. Meanwhile, the programmability of DNA allows the proposed strategy to simultaneously and selectively distinguish several HPV subtypes in solution using DNA labeled with different dyes. To demonstrate clinical potential, we show multiplexed assay of HPV subtypes in cervical scrapes, and it has been successfully applied in HPV-DNA analysis in cervical scrapes samples. The genotyping nanodevice could be developed for simultaneous and multiplex analysis of several oligonucleotides in a homogeneous solution by adjusting the recognition sequence, demonstrating its potential application in the rapid screening of multiple biomarkers.
Collapse
Affiliation(s)
- De Yu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yong Jian Jiang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Kun Han Nie
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jing Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuan Fang Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chun Mei Li
- Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
6
|
Xu H, Sun Y, Zhang X, Chen R, Cai Z, Zhao B, Liu X, Liu J. Universal two-dimensional labelled probe-mediated melting curve analysis based on multiplex PCR for rapid typing of Plasmodium in a single closed tube. Microb Biotechnol 2023; 16:838-846. [PMID: 36745663 PMCID: PMC10034624 DOI: 10.1111/1751-7915.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/07/2023] Open
Abstract
Currently, malaria is still one of the major public health problems commonly caused by the four Plasmodium species. The similar symptoms of malaria and the COVID-19 epidemic of fever or fatigue lead to frequent misdiagnosis. The disadvantages of existing detection methods, such as time-consuming, costly, complicated operation, need for experienced technicians, and indistinguishable typing, lead to difficulties in meeting the clinical requirements of rapid, easy, and accurate typing of common Plasmodium species. In this study, we developed and optimized a universal two-dimensional labelled probe-mediated melting curve analysis (UP-MCA) assay based on multiplex and asymmetric PCR for rapid and accurate typing of five Plasmodium species, including novel human Plasmodium, Plasmodium knowlesi (Pk), in a single closed tube following genome extraction. The assay showed a limit of detection (LOD) of 10 copies per reaction and could accurately distinguish Plasmodium species from intra-plasmodium and other pathogens. Additionally, we proposed and validated different methods of fluorescence quenching and tag design for probes that are suitable for UP-MCA assays. Moreover, the clinical performance of the Plasmodium UP-MCA assay using a base-quenched universal probe was evaluated using 226 samples and showed a sensitivity of 100% (164/164) and specificity of 100% (62/62) at a 99% confidence interval, with the microscopy method as the gold standard. In summary, the UP-MCA assay showed excellent sensitivity, specificity, and accuracy for genotyping Plasmodium species spp. Additionally, it facilitates convenient and rapid Plasmodium detection in routine clinical practice and has great potential for clinical translation.
Collapse
Affiliation(s)
- Haipo Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Ronghua Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Xiaolong Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, China
| | - Jingfeng Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
- Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
7
|
Zhu W, Wang T, Zhu Y, Xiao L, Liu W, Wei Q. Two-dimensional PCR for detecting class 1, 2 and 3 integrons. Heliyon 2022; 8:e11844. [DOI: 10.1016/j.heliyon.2022.e11844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
8
|
Wu L, Wang W, Zhang J, Wu X, Chen Y, Gu X, Shao H, Li H, Liu W. Detection of Five Types of HPV Genotypes Causing Anogenital Warts (Condyloma Acuminatum) Using PCR-Tm Analysis Technology. Front Microbiol 2022; 13:857410. [PMID: 35655998 PMCID: PMC9152731 DOI: 10.3389/fmicb.2022.857410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Condyloma acuminatum (CA) is a common sexually transmitted disease caused by human papillomavirus (HPV) infection. We established a high-throughput, simple, low-cost, and accurate HPV-typing assay (polymerase chain reaction-melting temperature [PCR-Tm] analysis) to detect HPV in CA. Materials and Methods We detected 280 cervical scraping samples, including positive samples of HPV-6 (26), HPV-11 (12), HPV-16 (22), HPV-42 (18), HPV-43 (25), HPV-multiple (19), HPV- other type (58), and HPV-negative samples (100). All samples were compared by PCR-Tm analysis and a flow fluorescence hybridization assay. Sequencing was used to confirm the results of the PCR-Tm analysis. Results PCR-Tm analysis was specific for each genotype (HPV-6, HPV-11, HPV-16, HPV-42, and HPV-43). The sensitivity of the PCR-Tm analysis assay for each genotype was 103, 103, 103, 103, and 102 copies/reaction, respectively. Most of the 158 samples, including 58 HPV-other type positive and 100 HPV-negative samples tested by the flow fluorescence hybridization assay, were tested negative by PCR-Tm analysis. For the 122 remaining samples, 26 HPV-6, 12 HPV-11, 22 HPV-16, 18 HPV-42, 25 HPV-43, and 19 multiple HPV infections were detected through PCR-Tm analysis. In total, 25 HPV-6, 12 HPV-11, 21 HPV-16, 18 HPV-42, 25 HPV-43, and only 10 multiple HPV infections were detected by the flow fluorescence hybridization assay. The kappa coefficient for the analysis of PCR-Tm analysis and flow fluorescence hybridization assay was 0.940 (P < 0.0001), and the 95% confidence interval of the kappa coefficient was 90.3–97.7%. Conclusion PCR-Tm analysis enabled the detection of HPV-6, HPV-11, HPV-16, HPV-42, and HPV-43, including single and multiple infections.
Collapse
Affiliation(s)
- Lixia Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Children's Hospital of Soochow University, Medical College of Soochow University, Soochow, China
| | - Weifeng Wang
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Central Laboratory, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Laboratory Medicine, Central Laboratory, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Xuan Wu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Central Laboratory, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Yan Chen
- Department of Laboratory Medicine, Central Laboratory, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China
| | - Xiaoping Gu
- Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University of Medicine, Shanghai, China
| | - Huaqing Shao
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weiwei Liu
- Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Laboratory Medicine, Central Laboratory, Shanghai Tenth People's Hospital, Tongji University of Medicine, Shanghai, China.,Department of Laboratory Medicine, Shanghai Skin Disease Hospital, Tongji University of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhuang X, Lu X, Lee Yu HL, Hsing IM. Unique Barcoded Primer-Assisted Sample-Specific Pooled Testing (Uni-Pool) for Large-Scale Screening of Viral Pathogens. Anal Chem 2022; 94:4021-4029. [PMID: 35199524 DOI: 10.1021/acs.analchem.1c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pooled testing has been widely adopted recently to facilitate large-scale community testing during the COVID-19 pandemic. This strategy allows to collect and screen multiple specimen samples in a single test, thus immensely saving the assay time and consumable expenses. Nevertheless, when the outcome of a pooled testing is positive, it necessitates repetitive retesting steps for each sample which can pose a serious challenge during a rising infection wave of increasing prevalence. In this work, we develop a unique barcoded primer-assisted sample-specific pooled testing strategy (Uni-Pool) where the key genetic sequences of the viral pathogen in a crude sample are extracted and amplified with concurrent tagging of sample-specific identifiers. This new process improves the existing pooled testing by eliminating the need for retesting and allowing the test results-positive or negative-for all samples in the pool to be revealed by multiplex melting curve analysis right after real-time polymerase chain reaction. It significantly reduces the total assay time for large-scale screening without compromising the specificity and detection sensitivity caused by the sample dilution of pooling. Our method was able to successfully differentiate five samples, positive and negative, in one pool with negligible cross-reactivity among the positive and negative samples. A pooling of 40 simulated samples containing severe acute respiratory syndrome coronavirus-2 pseudovirus of different loads (min: 10 copies/μL; max: 103 copies/μL) spiked into artificial saliva was demonstrated in eight randomized pools. The outcome of five samples in one pool with a hypothetical infection prevalence of 15% in 40 samples was successfully tested and validated by a typical Dorman-based pooling.
Collapse
Affiliation(s)
- Xinyu Zhuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Xiao Lu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Henson L Lee Yu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - I-Ming Hsing
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
10
|
Yan B, Zheng X, Shi P. Electrochemical sensor propelled by exonuclease III for highly efficient microRNA-155 detection. Analyst 2022; 147:4824-4828. [DOI: 10.1039/d2an01274j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We constructed an electrochemical sensor, propelled by exonuclease III, for highly efficient microRNA-155 detection. The detection performance of the sensor was excellent, with a detection limit as low as 0.035 fM.
Collapse
Affiliation(s)
- Bingyin Yan
- College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, Shandong, China
| | - Xiangjiang Zheng
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| | - Pengfei Shi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Medical College, Linyi University, Linyi 276005, China
| |
Collapse
|