1
|
Ye C, Lin S, Li J, Meng P, Huang L, Li D. Comprehensive insights into fluorescent probes for the determination nitric oxide for diseases diagnosis. Bioorg Chem 2024; 150:107505. [PMID: 38865860 DOI: 10.1016/j.bioorg.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Nitric oxide (NO) plays an important role in multiple physiological processes of the body involved in regulation, such as cardiovascular relaxation, neural homeostasis, and immune regulation, etc. The real-time monitoring of NO is of great significance in the investigation of related disease mechanisms and the evaluation of pharmacodynamics. Fluorescent probes are considered as a highly promising approach for pharmaceutical analysis and bioimaging due to their non-invasive character, real-time detection, and high sensitivity. However, there are still some challenges in the determination of biological nitric oxide with fluorescent probes, such as low anti-interference ability, poor function modifiability, and low organ specificity. Therefore, it would be beneficial to develop a new generation of fluorescent probes for real-time bioimaging of NO in vivo after this systematic summary.
Collapse
Affiliation(s)
- Chenqian Ye
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Shufang Lin
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Jinyi Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Peng Meng
- Fujian Inspection and Research Institute for Product Quality, Fuzhou 350117, PR China
| | - Luqiang Huang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China.
| | - Daliang Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, PR China; Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
2
|
An K, Fan J, Lin B, Han Y. A lysosome-targeted fluorescent probe for fluorescence imaging of hypochlorous acid in living cells and in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124316. [PMID: 38669982 DOI: 10.1016/j.saa.2024.124316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Lysosomes, as crucial acidic organelles in cells, play a significant role in cellular functions. The levels and distribution of hypochlorous acid (HOCl) within lysosomes can profoundly impact their biological functionality. Hence, real-time monitoring of the concentration of HOCl in lysosomes holds paramount importance for further understanding various physiological and pathological processes associated with lysosomes. In this study, we developed a bodipy-based fluorescent probe derived from pyridine and phenyl selenide for the specific detection of HOCl in aqueous solutions. Leveraging the probe's sensitive photoinduced electron transfer effect from phenyl selenide to the fluorophore, the probe exhibited satisfactory high sensitivity (with a limit of detection of 5.2 nM and a response time of 15 s) to hypochlorous acid. Further biological experiments confirmed that the introduction of the pyridine moiety enabled the probe molecule to selectively target lysosomes. Moreover, the probe successfully facilitated real-time monitoring of HOCl in cell models stimulated by N-acetylcysteine (NAC) and lipopolysaccharide (LPS), as well as in a normal zebrafish model. This provides a universal method for dynamically sensing HOCl in lysosomes.
Collapse
Affiliation(s)
- Ke An
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaxin Fan
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Bin Lin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yifeng Han
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Lu J, Wu Y, Zhan S, Zhong Y, Guo Y, Gao J, Zhang B, Dong X, Che J, Xu Y. A Microenvironment-responsive small-molecule probe and application in quick acute myocardial infarction imaging. Talanta 2024; 270:125571. [PMID: 38154354 DOI: 10.1016/j.talanta.2023.125571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Acute myocardial infarction (AMI) patients are at an elevated risk for life-threatening myocardial ischemia/reperfusion injury. Early-stage nonradioactive and noninvasive diagnosis of AMI is imperative for the subsequent disease treatment, yet it presents substantial challenges. After AMI, the myocardium typically exhibits elevated levels of peroxynitrite (ONOO-), constituting a distinct microenvironmental feature. In this context, the near-infrared imaging probe (BBEB) is employed to precisely delineate the boundaries of AMI lesions with a high level of sensitivity and specificity by monitoring endogenous ONOO-. This probe allows for the early detection of myocardial damage at cellular and animal levels, providing exceptional temporal and spatial resolution. Notably, BBEB enables visualization of ONOO- level alterations during AMI treatment incorporating antioxidant drugs. Overall, BBEB can rapidly and accurately visualize myocardial injury, particularly in the early stages, and can further facilitate antioxidant drug screening.
Collapse
Affiliation(s)
- Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Zhejiang, 310006, China.
| |
Collapse
|
4
|
Chang Z, Wu Y, Hu P, Jiang J, Quan G, Wu C, Pan X, Huang Z. The Necessity to Investigate In Vivo Fate of Nanoparticle-Loaded Dissolving Microneedles. Pharmaceutics 2024; 16:286. [PMID: 38399340 PMCID: PMC10892231 DOI: 10.3390/pharmaceutics16020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Transdermal drug delivery systems are rapidly gaining prominence and have found widespread application in the treatment of numerous diseases. However, they encounter the challenge of a low transdermal absorption rate. Microneedles can overcome the stratum corneum barrier to enhance the transdermal absorption rate. Among various types of microneedles, nanoparticle-loaded dissolving microneedles (DMNs) present a unique combination of advantages, leveraging the strengths of DMNs (high payload, good mechanical properties, and easy fabrication) and nanocarriers (satisfactory solubilization capacity and a controlled release profile). Consequently, they hold considerable clinical application potential in the precision medicine era. Despite this promise, no nanoparticle-loaded DMN products have been approved thus far. The lack of understanding regarding their in vivo fate represents a critical bottleneck impeding the clinical translation of relevant products. This review aims to elucidate the current research status of the in vivo fate of nanoparticle-loaded DMNs and elaborate the necessity to investigate the in vivo fate of nanoparticle-loaded DMNs from diverse aspects. Furthermore, it offers insights into potential entry points for research into the in vivo fate of nanoparticle-loaded DMNs, aiming to foster further advancements in this field.
Collapse
Affiliation(s)
- Ziyao Chang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (Y.W.); (X.P.)
| | - Yuhuan Wu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (Y.W.); (X.P.)
| | - Ping Hu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Junhuang Jiang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (Z.C.); (Y.W.); (X.P.)
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 511443, China; (P.H.); (G.Q.); (C.W.)
| |
Collapse
|
5
|
Li S, Wang P, Liu Y, Yang K, Zhong R, Cheng D, He L. A mitochondrial-targeted near-infrared fluorescent probe for visualizing the fluctuation of hypochlorite acid in idiopathic pulmonary fibrosis mice. Anal Chim Acta 2023; 1239:340731. [PMID: 36628728 DOI: 10.1016/j.aca.2022.340731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic inflammatory disease destroying lungs irreversibly with high mortality rates. There are challenges in diagnosing IPF and treating it at an early stage. Mounting evidence suggests that hypochlorous acid (HClO) can help in diagnosing inflammation and relevant conditions. Pulmonary fibrosis is linked to the mitochondrial oxidative stress where excessive HClO production is a key molecular mechanism. Measuring mitochondrial HClO levels assists in the investigations of how the mitochondrial oxidative stress affects IPF. Herein, NIR-PTZ-HClO was developed and optimized as a probe for detecting fluctuations in HClO concentrations of cells and mice models through near-infrared (NIR) fluorescence. The probe featured large Stokes shift of 150 nm, NIR turn-on signal at 650 nm, high sensitivity (45-fold) and quick HClO detection (2 s). The probe is selective for HClO in the presence of range of other analytes. NIR-PTZ-HClO visualized both endogenous and exogenous HClO in living cells (RAW264.7, H460 and A549). The probe monitored HClO in mice models with IPF and moreover the HClO profile could be tracked during the IPF process. The probe also detected precipitous decrease in HClO levels in IPF mice treated with OFEV. NIR-PTZ-HClO probe has thus the potential for earlier diagnosis of lung fibrosis, thereby improving the treatment efficacy.
Collapse
Affiliation(s)
- Songjiao Li
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Peipei Wang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Ying Liu
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Ke Yang
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Rongbin Zhong
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Dan Cheng
- Clinical Research Institute, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| | - Longwei He
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Cancer Research Institute, Department of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
6
|
Wang L, Wang Z, Chen Y, Huang Z, Huang X, Xue M, Cheng H, Li B, Liu P. A novel dual-channel fluorescent probe for selectively and sensitively imaging endogenous nitric oxide in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121280. [PMID: 35472703 DOI: 10.1016/j.saa.2022.121280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/28/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Nitric oxide (NO) plays various physiological and pathological roles in lots of biological processes. It is crucial to detect NO sensitively and selectively in vivo and in vitro as homeostasis of NO is closely related to various diseases. Herein, a novel dual-channel fluorescent dye (ENNH2) based on dicarboxyimide anthracene was developed as a highly sensitive and selective probe to detect NO in living systems using the dual-channel fluorescence. ENNH2 can emit bright red fluorescence due to the intramolecular charge transfer (ICT) from the amino group at the 6-position of 1,2-dicarboxyimide anthracene to the conjugated aromatic ring, and the ICT is effectively inhibited by the reductive deamination of the amino in the presence of NO to obtain the remarkable strong green emission with the excellent sensitivity (5.52 nM). Promisingly, ENNH2 exhibits an excellent performance in endogenous NO dual-channel fluorescence imaging of RAW 264.7 cells and zebrafish.
Collapse
Affiliation(s)
- Lin Wang
- Analytical and Testing Center, Jinan University, Guangzhou 510632, PR China
| | - Ziqian Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, PR China
| | - Yuan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Ziqi Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048 Guangdong, PR China
| | - Xianqi Huang
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048 Guangdong, PR China
| | - Mingyue Xue
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048 Guangdong, PR China
| | - Hanchao Cheng
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, PR China.
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| | - Peilian Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Clean Energy Materials Chemistry of Guangdong Higher Education Institutes, Lingnan Normal University, Zhanjiang, 524048 Guangdong, PR China.
| |
Collapse
|
7
|
Xu F, Wang Q, Jiang L, Zhu F, Yang L, Zhang S, Song X. Evaluation of Nitric Oxide Fluctuation Via a Fast, Responsive Fluorescent Probe in Idiopathic Pulmonary Fibrosis Cells and Mice Models. Anal Chem 2022; 94:4072-4077. [PMID: 35194985 DOI: 10.1021/acs.analchem.1c05643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal interstitial pneumonia with unknown pathogenesis. Early diagnosis and therapeutic intervention are essential for improving the prognosis of patients with IPF. The level of nitric oxide upregulates in the alveoli of IPF patients, which is correlated with the severity of the disease. Herein, we report a fluorescent probe DCM-nitric oxide (NO) to detect IPF by monitoring the concentration changes of NO. This probe displays a fast response time and a good linear response to NO in vitro. Fluorescence imaging experiments with probe DCM-NO revealed that the level of intracellular NO increases in the pulmonary fibrosis cells and IPF mice models. Probe DCM-NO displayed a strong red fluorescence in IPF mice models. However, a declining fluorescence was evidenced in the OFEV-treated IPF mice, implying that DCM-NO is capable of evaluating the therapeutic effects on IPF. Thus, probe DCM-NO can quickly predict the progression of pulmonary fibrosis at an early stage and thus help improve the effective treatment.
Collapse
Affiliation(s)
- Feifei Xu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Qing Wang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Ling Jiang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Fawei Zhu
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lei Yang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Shusheng Zhang
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
8
|
Liu Z, Tang X, Zhu Z, Ma X, Zhou W, Guan W. Recent Advances in Fluorescence Imaging of Pulmonary Fibrosis in Animal Models. Front Mol Biosci 2021; 8:773162. [PMID: 34796202 PMCID: PMC8592921 DOI: 10.3389/fmolb.2021.773162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a lung disease that may cause impaired gas exchange and respiratory failure while being difficult to treat. Rapid, sensitive, and accurate detection of lung tissue and cell changes is essential for the effective diagnosis and treatment of PF. Currently, the commonly-used high-resolution computed tomography (HRCT) imaging has been challenging to distinguish early PF from other pathological processes in the lung structure. Magnetic resonance imaging (MRI) using hyperpolarized gases is hampered by the higher cost to become a routine diagnostic tool. As a result, the development of new PF imaging technologies may be a promising solution. Here, we summarize and discuss recent advances in fluorescence imaging as a talented optical technique for the diagnosis and evaluation of PF, including collagen imaging, oxidative stress, inflammation, and PF-related biomarkers. The design strategies of the probes for fluorescence imaging (including multimodal imaging) of PF are briefly described, which can provide new ideas for the future PF-related imaging research. It is hoped that this review will promote the translation of fluorescence imaging into a clinically usable assay in PF.
Collapse
Affiliation(s)
- Zongwei Liu
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Xiaofang Tang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Zongling Zhu
- Department of Respiratory Medicine, Pukou District Hospital of Chinese Medicine, Pukou Branch of Nanjing Hospital of Chinese Medicine, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xunxun Ma
- Department of Respiratory Medicine, Lianyungang Hospital of Traditional Chinese Medicine (TCM), Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Wenjuan Zhou
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Weijiang Guan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
9
|
Liu S, Zhu Y, Wu P, Xiong H. Highly Sensitive D-A-D-Type Near-Infrared Fluorescent Probe for Nitric Oxide Real-Time Imaging in Inflammatory Bowel Disease. Anal Chem 2021; 93:4975-4983. [PMID: 33691397 DOI: 10.1021/acs.analchem.1c00281] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory bowel disease (IBD) is a common gastrointestinal inflammatory disease, affecting a huge number of people worldwide with increasing morbidity each year. Although the etiology of IBD has not been fully elucidated, it is understood to be closely related to upregulation of the production of NO. Herein, we first report a donor-acceptor-donor (D-A-D)-type near-infrared (NIR) fluorescent probe LS-NO for real-time detection of NO in IBD by harnessing the enhanced intramolecular charge transfer mechanism. LS-NO exhibited good water solubility, high photostability, and excellent NIR absorbance and emission at 700 and 750/800 nm, respectively. Moreover, it was able to sensitively and specifically detect exogenous and endogenous NO in the lysosomes of living cells. Notably, LS-NO enabled to noninvasively visualize NO generation in a lipopolysaccharide-induced IBD mouse model for 30 h, showing a two- to threefold higher NIR fluorescence intensity in the intestines and feces of IBD mice than normal mice. This work demonstrates that LS-NO is promising as a diagnosis agent for real-time detection of NO in IBD and may promote inflammatory stool examination simultaneously.
Collapse
Affiliation(s)
- Senyao Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Zhu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Dong Y, Li XR, Li J, Zang Y, Li X. Selective and sensitive fluorescence imaging reveals microenvironment-dependent behavior of NO modulators in the endothelial system. J Pharm Anal 2020; 10:466-472. [PMID: 33133730 PMCID: PMC7591781 DOI: 10.1016/j.jpha.2020.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/26/2020] [Accepted: 05/22/2020] [Indexed: 11/28/2022] Open
Abstract
Nitric oxide (NO) is a second messenger playing crucial roles in the signaling of a variety of cellular functions. Due to its pathophysiological significance, various NO modulators have been developed to explore NO pathways and some have been used as therapies. These modulators are often used directly to observe pharmacological effects in cell lines, but their actual effect on intracellular NO level is seldom analyzed. Herein, facilitated by a selective and sensitive fluorescence probe, we observed that some NO modulators displayed unexpected behaviors with both NO scavenger carboxy-PTIO and endothelial nitric oxide synthase (eNOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME) failing to decrease intracellular free NO level in EA. hy926 cells while NO donor diethylamine-NONOate (DEA·NONOate) and eNOS activator calcimycin (A23187) failing to increase free NO level in human umbilical vein endothelial cell line (HUV-EC-C), although the reagents were confirmed to work normally in the primary human umbilical vein endothelial cells (primary HUVECs) and RAW 264.7 macrophage cells. Further research suggested that these unusual behaviors might be attributed to the cellular microenvironments including both the NO synthase (NOS) level and the endogenous glutathione (GSH) level. Genetically manipulating eNOS level in both cells restores the expected response, while decreasing GSH level restores the ability of DEA·NONOate to increase NO level in HUV-EC-C. These results reveal that the cellular microenvironment has a profound impact on pharmacological effect. Our study suggests GSH as a reservoir for NO in live cells and highlights the value of chemical probes as valuable tools to reveal microenvironment-dependent pharmacological effects. An imaging based method for evaluating the efficacy of NO modulators in live cells was developed. Some NO modulators were observed yielding unexpected effects on cellular NO levels in some endothelial cell lines. Further study unveiled intracellular microenvironments have profound effects on the efficacy of NO modulators in live cells. This result highlights the pitfall of the specific cellular microenvironments on drug efficacy.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Rong Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Open Studio for Draggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao, 266237, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
11
|
Wang L, Liu J, Zhao S, Zhang H, Sun Y, Wei A, Guo W. Fluorescence imaging of hypochlorous acid and peroxynitritein vitroandin vivowith emission wavelength beyond 750 nm. Chem Commun (Camb) 2020; 56:7718-7721. [DOI: 10.1039/d0cc02322a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydro-Si-oxazines were exploited as NIR fluorescent probes to monitor HClO/ONOO−produced by phagocytes in inflammation-related diseases.
Collapse
Affiliation(s)
- Linfang Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Jing Liu
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Shengwei Zhao
- School of Aerospace Engineering and Applied Mechanics
- Tongji University
- Shanghai 200092
- China
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Yuanqiang Sun
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Aihua Wei
- Shanxi University Library
- Shanxi University
- Taiyuan 030006
- China
| | - Wei Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|