1
|
Basak M, Nemade HB, Bandyopadhyay D. Silver shelled gold nanorods for sensitive detection of cholesterol and triglycerides. Biosens Bioelectron 2024; 268:116885. [PMID: 39481298 DOI: 10.1016/j.bios.2024.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
We report the synthesis of bimetallic plasmonic nanostructure of silver shelled gold nanorods (Ag-Au NRs), subsequently employed for the selective detection of cholesterol (Cho) and triglycerides (TGl) utilizing Surface Enhanced Raman Spectroscopy (SERS). In this direction, the gold nanorods (Au NRs) were synthesized via seed mediated growth method followed by forming a silver shell with reduction of AgNO3 onto Au NRs. Ag-Au NRs showed significantly augmented SERS property owing to hybridization of Localized Surface Plasmon Resonances (LSPR) of silver and gold. The enhanced plasmonic property was thus employed for biosensing. For this, two different Raman reporter molecules, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and 4-aminothiophenol (4ATP) were immobilized separately on Ag-Au NRs to synthesize SERS active nanoprobes, before the attachment of the bioreceptors - cholesterol oxidase (ChOx) and lipase (Lp) to form ChOx-DTNB-Ag-Au NRs and Lp-4ATP-Ag-Au NRs. These nanoprobes were then utilized for the quantification of Cho and TGl via liquid mode Raman spectroscopic study. The change in SERS spectral intensity of DTNB and 4ATP were systematically recorded in reference to the baseline sample to mark the calibration for both Cho and TGl. Additionally, interference studies considering effects of ascorbic acid, glucose, sodium and potassium ion were performed to unveil excellent selectivity of the proposed method.
Collapse
Affiliation(s)
- Mitali Basak
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Harshal B Nemade
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam, 781039, India; Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Dipankar Bandyopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India; Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam, 781039, India; Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Tavakkoli Yaraki M, Rubio NS, Tukova A, Liu J, Gu Y, Kou L, Wang Y. Spectroscopic Identification of Charge Transfer of Thiolated Molecules on Gold Nanoparticles via Gold Nanoclusters. J Am Chem Soc 2024; 146:5916-5926. [PMID: 38380514 DOI: 10.1021/jacs.3c11959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Investigation of charge transfer needs analytical tools that could reveal this phenomenon, and enables understanding of its effect at the molecular level. Here, we show how the combination of using gold nanoclusters (AuNCs) and different spectroscopic techniques could be employed to investigate the charge transfer of thiolated molecules on gold nanoparticles (AuNP@Mol). It was found that the charge transfer effect in the thiolated molecule could be affected by AuNCs, evidenced by the amplification of surface-enhanced Raman scattering (SERS) signal of the molecule and changes in fluorescence lifetime of AuNCs. Density functional theory (DFT) calculations further revealed that AuNCs could amplify the charge transfer process at the molecular level by pumping electrons to the surface of AuNPs. Finite element method (FEM) simulations also showed that the electromagnetic enhancement mechanism along with chemical enhancement determines the SERS improvement in the thiolated molecule. This study provides a mechanistic insight into the investigation of charge transfer at the molecular level between organic and inorganic compounds, which is of great importance in designing new nanocomposite systems. Additionally, this work demonstrates the potential of SERS as a powerful analytical tool that could be used in nanochemistry, material science, energy, and biomedical fields.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Noelia Soledad Rubio
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Junxian Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
4
|
Zheng P, Raj P, Wu L, Mizutani T, Szabo M, Hanson WA, Barman I. Quantitative Detection of Thyroid-Stimulating Hormone in Patient Samples with a Nanomechanical Single-Antibody Spectro-Immunoassay. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305110. [PMID: 37752776 PMCID: PMC10922205 DOI: 10.1002/smll.202305110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Functional disorders of the thyroid remain a global challenge and have profound impacts on human health. Serving as the barometer for thyroid function, thyroid-stimulating hormone (TSH) is considered the single most useful test of thyroid function. However, the prevailing TSH immunoassays rely on two types of antibodies in a sandwich format. The requirement of repeated incubation and washing further complicates the issue, making it unable to meet the requirements of the shifting public health landscape that demands rapid, sensitive, and low-cost TSH tests. Herein, a systematic study is performed to investigate the clinical translational potential of a single antibody-based biosensing platform for the TSH test. The biosensing platform leverages Raman spectral variations induced by the interaction between a TSH antigen and a Raman molecule-conjugated TSH antibody. In conjunction with machine learning, it allows TSH concentrations in various patient samples to be predicted with high accuracy and precision, which is robust against substrate-to-substrate, intra-substrate, and day-to-day variations. It is envisioned that the simplicity and generalizability of this single-antibody immunoassay coupled with the demonstrated performance in patient samples pave the way for it to be widely applied in clinical settings for low-cost detection of hormones, other molecular biomarkers, DNA, RNA, and pathogens.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
5
|
Leong SX, Tan EX, Han X, Luhung I, Aung NW, Nguyen LBT, Tan SY, Li H, Phang IY, Schuster S, Ling XY. Surface-Enhanced Raman Scattering-Based Surface Chemotaxonomy: Combining Bacteria Extracellular Matrices and Machine Learning for Rapid and Universal Species Identification. ACS NANO 2023; 17:23132-23143. [PMID: 37955967 DOI: 10.1021/acsnano.3c09101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Rapid, universal, and accurate identification of bacteria in their natural states is necessary for on-site environmental monitoring and fundamental microbial research. Surface-enhanced Raman scattering (SERS) spectroscopy emerges as an attractive tool due to its molecule-specific spectral fingerprinting and multiplexing capabilities, as well as portability and speed of readout. Here, we develop a SERS-based surface chemotaxonomy that uses bacterial extracellular matrices (ECMs) as proxy biosignatures to hierarchically classify bacteria based on their shared surface biochemical characteristics to eventually identify six distinct bacterial species at >98% classification accuracy. Corroborating with in silico simulations, we establish a three-way inter-relation between the bacteria identity, their ECM surface characteristics, and their SERS spectral fingerprints. The SERS spectra effectively capture multitiered surface biochemical insights including ensemble surface characteristics, e.g., charge and biochemical profiles, and molecular-level information, e.g., types and numbers of functional groups. Our surface chemotaxonomy thus offers an orthogonal taxonomic definition to traditional classification methods and is achieved without gene amplification, biochemical testing, or specific biomarker recognition, which holds great promise for point-of-need applications and microbial research.
Collapse
Affiliation(s)
- Shi Xuan Leong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Emily Xi Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Xuemei Han
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Irvan Luhung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Ngu War Aung
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Si Yan Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
| | - Haitao Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - In Yee Phang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Stephan Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
6
|
Limwichean S, Leung W, Sataporncha P, Houngkamhang N, Nimittrakoolchai OU, Saekow B, Pogfay T, Somboonsaksri P, Chia JY, Botta R, Horprathum M, Porntheeraphat S, Nuntawong N. Label free detection of multiple trace antibiotics with SERS substrates and independent components analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122584. [PMID: 36913899 DOI: 10.1016/j.saa.2023.122584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 02/12/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) has been widely studied and recognized as a powerful label-free technique for trace chemical analysis. However, its drawback in simultaneously identifying several molecular species has greatly limited its real-world applications. In this work, we reported a combination between SERS and independent component analysis (ICA) to detect several trace antibiotics which are commonly used in aquacultures, including malachite green, furazolidone, furaltadone hydrochloride, nitrofurantoin, and nitrofurazone. The analysis results indicate that the ICA method is highly effective in decomposing the measured SERS spectra. The target antibiotics could be precisely identified when the number of components and the sign of each independent component loading were properly optimized. With SERS substrates, the optimized ICA can identify trace molecules in a mixture at a concentration of 10-6 M achieving the correlation values to the reference molecular spectra of 71-98%. Furthermore, measurement results obtained from a real-world sample demonstration could also be recognized as an important basis to suggest this method is promising for monitoring antibiotics in a real aquatic environment.
Collapse
Affiliation(s)
- Saksorn Limwichean
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Wipawanee Leung
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pemika Sataporncha
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Nongluck Houngkamhang
- College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok 10520, Thailand
| | - On-Uma Nimittrakoolchai
- SCI Innovatech Co., Ltd., 139 Soi Rattanathibet 28, Bangkhasor Amphur Mueang Nonthaburi, Nonthaburi 11000, Thailand
| | - Bunpot Saekow
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Tawee Pogfay
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pacharamon Somboonsaksri
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jia Yi Chia
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Raju Botta
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Mati Horprathum
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Supanit Porntheeraphat
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Noppadon Nuntawong
- National Electronics and Computer Technology Center, 112 Thailand Science Park, Pathum Thani 12120, Thailand.
| |
Collapse
|
7
|
Alix JJP, Verber NS, Schooling CN, Kadirkamanathan V, Turner MR, Malaspina A, Day JCC, Shaw PJ. Label-free fibre optic Raman spectroscopy with bounded simplex-structured matrix factorization for the serial study of serum in amyotrophic lateral sclerosis. Analyst 2022; 147:5113-5120. [PMID: 36222101 PMCID: PMC9639415 DOI: 10.1039/d2an00936f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease in urgent need of disease biomarkers for the assessment of promising therapeutic candidates in clinical trials. Raman spectroscopy is an attractive technique for identifying disease related molecular changes due to its simplicity. Here, we describe a fibre optic fluid cell for undertaking spontaneous Raman spectroscopy studies of human biofluids that is suitable for use away from a standard laboratory setting. Using this system, we examined serum obtained from patients with ALS at their first presentation to our centre (n = 66) and 4 months later (n = 27). We analysed Raman spectra using bounded simplex-structured matrix factorization (BSSMF), a generalisation of non-negative matrix factorisation which uses the distribution of the original data to limit the factorisation modes (spectral patterns). Biomarkers associated with ALS disease such as measures of symptom severity, respiratory function and inflammatory/immune pathways (C3/C-reactive protein) correlated with baseline Raman modes. Between visit spectral changes were highly significant (p = 0.0002) and were related to protein structure. Comparison of Raman data with established ALS biomarkers as a trial outcome measure demonstrated a reduction in required sample size with BSSMF Raman. Our portable, simple to use fibre optic system allied to BSSMF shows promise in the quantification of disease-related changes in ALS over short timescales.
Collapse
Affiliation(s)
- James J P Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - Nick S Verber
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| | - Chlöe N Schooling
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Department of Automatic Control and Systems Engineering, University of Sheffield, UK
| | | | - Martin R Turner
- Nuffield Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - John C C Day
- Interface Analysis Centre, School of Physics, University of Bristol, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, UK.
- Neuroscience Institute, University of Sheffield, UK
| |
Collapse
|
8
|
Conductance Modulation in an α-Terthiophene Molecular Junction Characterized by Surface-Enhanced Raman Scattering. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2022. [DOI: 10.1380/ejssnt.2023-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Zheng P, Raj P, Wu L, Szabo M, Hanson WA, Mizutani T, Barman I. Leveraging Nanomechanical Perturbations in Raman Spectro-Immunoassays to Design a Versatile Serum Biomarker Detection Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204541. [PMID: 36117050 PMCID: PMC9948683 DOI: 10.1002/smll.202204541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Indexed: 05/28/2023]
Abstract
While immunoassays are pivotal to medical diagnosis and bioanalytical chemistry, the current landscape of public health has catalyzed an important shift in the requirements of immunoassays that demand innovative solutions. For example, rapid, label-free, and low-cost screening of a given analyte is required to inform the best countermeasures to combat infectious diseases in a timely manner. Yet, the current design of immunoassays cannot accommodate such requirements as constraint by accumulative challenges, such as repeated incubation and washing, and the need of two types of antibodies in the sandwich format. To provide a potential solution, herein, a plasmonic Raman immunoassay with single-antibody, multivariate regression, and shift-of-peak strategies, coined as the PRISM assay, for serum biomarkers detection, is reported. The PRISM assay relies on Raman reporter-antibody conjugates to capture analytes on a plasmonic substrate. The ensuing nanomechanical perturbations to vibration of Raman reporters induce subtle but characteristic spectral changes that encode rich information related to the captured analytes. By fusing Raman spectroscopy and chemometric analysis, both Raman frequency shift- and multivariate regression models for sensitive detection of biomarkers are developed. The PRISM assay is expected to find a wide range of applications in clinical diagnosis, food safety surveillance, and environmental monitoring.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
| |
Collapse
|
10
|
Zheng P, Wu L, Raj P, Mizutani T, Szabo M, Hanson WA, Barman I. A Dual-Modal Single-Antibody Plasmonic Spectro-Immunoassay for Detection of Small Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200090. [PMID: 35373504 PMCID: PMC9302383 DOI: 10.1002/smll.202200090] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Indexed: 05/03/2023]
Abstract
Small molecules play a pivotal role in regulating physiological processes and serve as biomarkers to uncover pathological conditions and the effects of therapeutic treatments. However, it remains a significant challenge to detect small molecules given the size as compared to macromolecules. Recently, the newly emerging plasmonic immunoassays based on surface-enhanced Raman scattering (SERS) offer great promise to deliver extraordinary sensitivity. Nevertheless, they are limited by the intrinsic SERS intensity fluctuations associated with the SERS uncertainty principle. The single transducer that relies on the intensity change is also prone to false signals. Additionally, the prevailing sandwich immunoassay format proves less effective towards detecting small molecules. To circumvent these critical issues, a dual-modal single-antibody approach that synergizes both the intensity and shift of the peak-based immunoassay with Raman enhancement, coined as the INSPIRE assay, is developed for small molecules detection. With two independent transduction mechanisms, it allows better prediction of analyte concentration and attenuation of signal artifacts, providing a new and robust strategy for molecular analysis. With a proof-of-concept demonstration for detection of free T4 and testosterone in serum matrix, the authors envision that the INSPIRE assay could be expanded for a wide spectrum of applications in biomedical diagnosis, discovery of new biopharmaceuticals, food safety, and environmental monitoring.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| | - Takayuki Mizutani
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Miklos Szabo
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - William A. Hanson
- Beckman Coulter Diagnostics – Immunoassay Business Unit, 1000 Lake Hazeltine Dr, Chaska, MN 55318
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, United States
- To whom the correspondence should be addressed.
| |
Collapse
|
11
|
Yin H, Jin Z, Duan W, Han B, Han L, Li C. Emergence of Responsive Surface-Enhanced Raman Scattering Probes for Imaging Tumor-Associated Metabolites. Adv Healthc Mater 2022; 11:e2200030. [PMID: 35182455 DOI: 10.1002/adhm.202200030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/03/2022] [Indexed: 11/11/2022]
Abstract
As a core hallmark of cancer, metabolic reprogramming alters the metabolic networks of cancer cells to meet their insatiable appetite for energy and nutrient. Tumor-associated metabolites, the products of metabolic reprogramming, are valuable in evaluating tumor occurrence and progress timely and accurately because their concentration variations usually happen earlier than the aberrances demonstrated in tissue structure and function. As an optical spectroscopic technique, surface-enhanced Raman scattering (SERS) offers advantages in imaging tumor-associated metabolites, including ultrahigh sensitivity, high specificity, multiplexing capacity, and uncompromised signal intensity. This review first highlights recent advances in the development of stimuli-responsive SERS probes. Then the mechanisms leading to the responsive SERS signal triggered by tumor metabolites are summarized. Furthermore, biomedical applications of these responsive SERS probes, such as the image-guided tumor surgery and liquid biopsy examination for tumor molecular typing, are summarized. Finally, the challenges and prospects of the responsive SERS probes for clinical translation are also discussed.
Collapse
Affiliation(s)
- Hang Yin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Ziyi Jin
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Wenjia Duan
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Bing Han
- Minhang Hospital Fudan University Xinsong Road 170 Shanghai 201100 China
| | - Limei Han
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| | - Cong Li
- Minhang Hospital and Key Laboratory of Smart Drug Delivery Ministry of Education State Key Laboratory of Medical Neurobiology School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
12
|
Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy S, Çapanoğlu E, Apak R. Biomarkers of Oxidative Stress and Antioxidant Defense. J Pharm Biomed Anal 2021; 209:114477. [PMID: 34920302 DOI: 10.1016/j.jpba.2021.114477] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
A number of reactive oxygen and nitrogen species are produced during normal metabolism in human body. These species can be both radical and non-radical and have varying degrees of reactivity. Although they have some important functions in the human body, such as contributing to signal transmission and the immune system, their presence must be balanced by the antioxidant defense system. The human body has an excellent intrinsic enzymatic antioxidant system in addition to different non-enzymatic antioxidants having small molecular masses. An extrinsic source of antioxidants are foodstuffs such as fruits, vegetables, herbs and spices, mostly rich in polyphenols. When the delicate biochemical balance between oxidants and antioxidants is disturbed in favor of oxidants, "oxidative stress" conditions emerge, under which reactive species can cause oxidative damage to biomacromolecules such as proteins, carbohydrates, lipids and DNA. This oxidative damage is often associated with cancer, aging, and neurodegenerative disorders. Because reactive species are extremely short-lived, it is almost impossible to measure their concentrations directly. Although there are certain methods such as ESR / EPR that serve this purpose, they have some disadvantages and are quite costly systems. Therefore, products generated from oxidative damage of proteins, lipids and DNA are often used to quantify the extent of oxidative damage rather than direct measurement of reactive species. These oxidative damage products are usually known as biomarkers. Determination of the concentrations of these biomarkers and changes in the concentration of protective antioxidants can provide useful information for avoiding certain diseases and keep healthy conditions.
Collapse
Affiliation(s)
- Sema Demirci-Çekiç
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Gülay Özkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey
| | - Aslı Neslihan Avan
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Seda Uzunboy
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Esra Çapanoğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical Uviversity, Istanbul, Turkey.
| | - Reşat Apak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Vedat Dalokay St. No. 112, Cankaya, 06670 Ankara, Turkey.
| |
Collapse
|
13
|
Liu C, Lei F, Wei Y, Li Z, Zhang C, Peng Q, Man B, Yu J. Preparation of a superhydrophobic AgNP/GF substrate and its SERS application in a complex detection environment. OPTICS EXPRESS 2021; 29:34085-34096. [PMID: 34809206 DOI: 10.1364/oe.441606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is widely considered to be a fingerprint spectrum that can realize molecular identification, and it continues to receive a lot of attention due to its high sensitivity and powerful qualitative analysis capabilities. In recent years, there has been a lot of work and reports on super-sensitive SERS substrates, but often the enhanced ability of the substrate is also effective for impurities and irrelevant molecules. Therefore, a problem that still remains to be solved is how to perform effective trace detection of specific substances in a complex detection environment. Herein, a superhydrophobic Ag nanoparticle/glass microfibre filter (AgNP/GF) substrate was designed to realize the Raman detection of complex multiphase solutions. The hydrophobic three-dimensional net-like structure provides efficient Raman enhancement, making the substrate have extremely high detection limits for dye molecules and even achieving specific detection of the hexane phase component (thiram molecule) in a multiphase solution.
Collapse
|
14
|
Zhu W, Hutchison JA, Dong M, Li M. Frequency Shift Surface-Enhanced Raman Spectroscopy Sensing: An Ultrasensitive Multiplex Assay for Biomarkers in Human Health. ACS Sens 2021; 6:1704-1716. [PMID: 33939402 DOI: 10.1021/acssensors.1c00393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The sensitive and selective detection of biomarkers for human health remains one of the grand challenges of the analytical sciences. Compared to established methods (colorimetric, (chemi) luminescent), surface-enhanced Raman spectroscopy (SERS) is an emerging alternative with enormous potential for ultrasensitive biological detection. Indeed even attomolar (10-18 M) detection limits are possible for SERS due to an orders-of-magnitude boosting of Raman signals at the surface of metallic nanostructures by surface plasmons. However, challenges remain for SERS assays of large biomolecules, as the largest enhancements require the biomarker to enter a "hot spot" nanogap between metal nanostructures. The frequency-shift SERS method has gained popularity in recent years as an alternative assay that overcomes this drawback. It measures frequency shifts in intense SERS peaks of a Raman reporter during binding events on biomolecules (protein coupling, DNA hybridization, etc.) driven by mechanical transduction, charge transfer, or local electric field effects. As such, it retains the excellent multiplexing capability of SERS, with multiple analytes being identifiable by a spectral fingerprint in a single read-out. Meanwhile, like refractive index surface plasmon resonance methods, frequency-shift SERS measures the shift of an intense signal rather than resolving a peak above noise, easing spectroscopic resolution requirements. SERS frequency-shift assays have proved particularly suitable for sensing large, highly charged biomolecules that alter hydrogen-bonding networks upon specific binding. Herein we discuss the frequency-shift SERS method and promising applications in (multiplex) biomarker sensing as well as extensions to ion and gas sensing and much more.
Collapse
Affiliation(s)
- Wenfeng Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - James Andell Hutchison
- School of Chemistry, University of Melbourne, 30 Flemington Road, Parkville 3052, Victoria, Australia
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus C 8000, Denmark
| | - Min Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Shen Y, Yue J, Xu W, Xu S. Recent progress of surface-enhanced Raman spectroscopy for subcellular compartment analysis. Theranostics 2021; 11:4872-4893. [PMID: 33754033 PMCID: PMC7978302 DOI: 10.7150/thno.56409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022] Open
Abstract
Organelles are involved in many cell life activities, and their metabolic or functional disorders are closely related to apoptosis, neurodegenerative diseases, cardiovascular diseases, and the development and metastasis of cancers. The explorations of subcellular structures, microenvironments, and their abnormal conditions are conducive to a deeper understanding of many pathological mechanisms, which are expected to achieve the early diagnosis and the effective therapy of diseases. Organelles are also the targeted locations of drugs, and they play significant roles in many targeting therapeutic strategies. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool that can provide the molecular fingerprint information of subcellular compartments and the real-time cellular dynamics in a non-invasive and non-destructive way. This review aims to summarize the recent advances of SERS studies on subcellular compartments, including five parts. The introductions of SERS and subcellular compartments are given. SERS is promising in subcellular compartment studies due to its molecular specificity and high sensitivity, and both of which highly match the high demands of cellular/subcellular investigations. Intracellular SERS is mainly cataloged as the labeling and label-free methods. For subcellular targeted detections and therapies, how to internalize plasmonic nanoparticles or nanostructure in the target locations is a key point. The subcellular compartment SERS detections, SERS measurements of isolated organelles, investigations of therapeutic mechanisms from subcellular compartments and microenvironments, and integration of SERS diagnosis and treatment are sequentially presented. A perspective view of the subcellular SERS studies is discussed from six aspects. This review provides a comprehensive overview of SERS applications in subcellular compartment researches, which will be a useful reference for designing the SERS-involved therapeutic systems.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- School of Pharmaceutical Sciences, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Yue
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
16
|
Ma H, Han XX, Zhao B. Enhanced Raman spectroscopic analysis of protein post-translational modifications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Wang D, He P, Wang Z, Li G, Majed N, Gu AZ. Advances in single cell Raman spectroscopy technologies for biological and environmental applications. Curr Opin Biotechnol 2020; 64:218-229. [PMID: 32688195 DOI: 10.1016/j.copbio.2020.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/29/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The increasing sophistication of single cell Raman spectroscopy (SCRS) via its integrations with other advanced analytical techniques and modern data analytics, enable unprecedented exploration of complex biological and environmental samples with significantly improved specificity, sensitivity, and resolution. Because of the merits of being high-resolution, label-free, non-invasive, molecular-specific, culture-independent, and suitable for in situ, in vitro or in vivo analysis, the SCRS-derived techniques offer abilities superior to conventional bulk measurements for environmental and biological studies. Here, we provide a comprehensive and critical review of the most recent advances in the development and application of SCRS-enabled technologies, with focus on those biomolecular and cellular high-resolution applications in environmental and biological fields. The basic principles, unique advantages, and suitable applications, as well as recognized limitations for each technology are recapitulated. The remaining challenges, research needs and future outlook are discussed. We predict that SCRS-enabled technologies are earning its place as a routine and powerful tool in many and rapidly expanding applications across disciplines.
Collapse
Affiliation(s)
- Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Peisheng He
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Zijian Wang
- School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States
| | - Guangyu Li
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States
| | - Nehreen Majed
- Department of Civil Engineering, University of Asia Pacific, 74/A, Green Road, Dhaka 1215, Bangladesh
| | - April Z Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States; School of Civil and Environmental Engineering, Cornell University, 220 Hollister Hall, Ithaca, NY 14853, United States.
| |
Collapse
|
18
|
Cui X, Song M, Liu Y, Yuan Y, Huang Q, Cao Y, Lu F. Identifying conformational changes of aptamer binding to theophylline: A combined biolayer interferometry, surface-enhanced Raman spectroscopy, and molecular dynamics study. Talanta 2020; 217:121073. [PMID: 32498900 DOI: 10.1016/j.talanta.2020.121073] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/20/2022]
Abstract
Theophylline is a potent bronchodilator for the treatment of asthma, bronchitis, and emphysema. Its narrow therapeutic window (20-100 μM) demands that the blood concentration of theophylline be monitored carefully, which can be achieved by aptamer capture. Thus, an understanding of what occurs when aptamers bind to theophylline is critical for identifying a high-affinity and high-specificity aptamer, which improve the sensitivity and selectivity of theophylline detection. Consequently, there is an urgent need to develop a simple, convenient, and nondestructive method to monitor conformational changes during the binding process. Here, we report the determination of the affinity of a selected aptamer and theophylline via biolayer interferometry (BLI) experiments. Additionally, using surface-enhanced Raman spectroscopy (SERS), the conformational changes on theophylline-aptamer binding were identified from differences in the SER spectra. Finally, molecular dynamics (MD) simulations were used to identify the specific conformational changes of the aptamer during the binding process. Such a combined BLI-SERS-MD method provides an in-depth understanding of the theophylline-aptamer binding processes and a comprehensive explanation for conformational changes, which helps to select, design, and modify an aptamer with high affinity and specificity. It can also be used as a scheme for the study of other aptamer-ligand interactions, which can be applied to the detection, sensing, clinical diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Xiaolin Cui
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Menghua Song
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Yifan Yuan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yongbing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200082, China
| | - Feng Lu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, 200433, China.
| |
Collapse
|
19
|
Shao X, Zhang H, Yang Z, Zhu L, Cai Z. Quantitative Profiling of Protein-Derived Electrophilic Cofactors in Bacterial Cells with a Hydrazine-Derived Probe. Anal Chem 2020; 92:4484-4490. [PMID: 32093472 DOI: 10.1021/acs.analchem.9b05607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational modification of proteins can form electrophilic cofactors that serve as a catalytic center. The derived electrophilic cofactors greatly expand protein activities and functions. However, there are few studies concerning how to profile the electrophiles in bacteria. Herein, we utilized a clickable probe called propargyl hydrazine to profile the protein-derived electrophilic cofactors in Escherichia coli (E. coli) cells. Since the cofactors are mostly carbonyl groups, the hydrazine-based probe can specifically react with the cofactors to form a Schiff base. The labeled proteins were then pulled down for mass spectrometry (MS) analysis. Fourteen proteins were shown to undergo enrichment by the probe and competitive binding by its analogue, propyl hydrazine. The identified proteins were further analyzed with targeted proteomics based on parallel reaction monitoring (PRM). Using this strategy, we obtained a global portrait of protein electrophiles in bacterial cells, among which the proteins of speD and panD were previously reported to derive pyruvoyl group as an electrophilic center while lpp can retain N-terminal formyl methionine. This quantitative chemical proteomics strategy can be used to find out protein electrophiles in bacteria and holds great potential to further characterize the protein functions.
Collapse
Affiliation(s)
- Xiaojian Shao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hailei Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
20
|
Zhu T, Wang H, Zang L, Jin S, Guo S, Park E, Mao Z, Jung YM. Flexible and Reusable Ag Coated TiO 2 Nanotube Arrays for Highly Sensitive SERS Detection of Formaldehyde. Molecules 2020; 25:molecules25051199. [PMID: 32155919 PMCID: PMC7179449 DOI: 10.3390/molecules25051199] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 11/23/2022] Open
Abstract
Quantitative analysis of formaldehyde (HCHO, FA), especially at low levels, in various environmental media is of great importance for assessing related environmental and human health risks. A highly efficient and convenient FA detection method based on surface-enhanced Raman spectroscopy (SERS) technology has been developed. This SERS-based method employs a reusable and soft silver-coated TiO2 nanotube array (TNA) material, such as an SERS substrate, which can be used as both a sensing platform and a degradation platform. The Ag-coated TNA exhibits superior detection sensitivity with high reproducibility and stability compared with other SERS substrates. The detection of FA is achieved using the well-known redox reaction of FA with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) at room temperature. The limit of detection (LOD) for FA is 1.21 × 10−7 M. In addition, the stable catalytic performance of the array allows the degradation and cleaning of the AHMT-FA products adsorbed on the array surface under ultraviolet irradiation, making this material recyclable. This SERS platform displays a real-time monitoring platform that combines the detection and degradation of FA.
Collapse
Affiliation(s)
- Tong Zhu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hang Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Libin Zang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Sila Jin
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
| | - Zhu Mao
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
- Correspondence: (Z.M.); (Y.M.J.)
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea; (L.Z.); (S.J.); (S.G.); (E.P.)
- Correspondence: (Z.M.); (Y.M.J.)
| |
Collapse
|