1
|
Zhao R, Xiao Y, Tang Y, Lu B, Li B. Label-Free and Universal CRISPR/Cas12a-Based Detection Platform for Nucleic Acid Biomarkers. ACS Sens 2024; 9:4803-4810. [PMID: 39283984 DOI: 10.1021/acssensors.4c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
CRISPR/Cas12a has been widely used in molecular diagnostics due to its excellent trans-cleavage activity. However, conventional reporters, such as F/Q-labeled single-stranded DNA (ssDNA) reporters, enzyme-labeled reporters, and spherical nucleic acid reporters, require complex modification or labeling processes. In this study, we have developed a rapid, universal, and label-free CRISPR/Cas12a-based biomarker detection platform via designing a G-quadruplex (G4) containing a hairpin structure as the reporter. The hairpin loop design of hairpin G4 improves the cleavage efficiency of Cas12a and the signal strength of the G4 binding ligand. Meanwhile, the incorporation of a G4 binding dye (protoporphyrin IX) eliminates the need for complex modifications. The CRISPR-hairpin G4 detection platform is capable of detecting ssDNA, double-stranded DNA, genetic RNAs, and miRNAs. Moreover, this platform achieves label-free detection in clinical samples, demonstrating its practical applicability and efficiency.
Collapse
Affiliation(s)
- Rujian Zhao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Xiao
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yidan Tang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Baiyang Lu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Zhang XW, Qi GX, Chen S, Yu YL, Wang JH. Ultrasensitive and Wash-Free Detection of Tumor Extracellular Vesicles by Aptamer-Proximity-Ligation-Activated Rolling Circle Amplification Coupled to Single Particle ICP-MS. Anal Chem 2024; 96:10800-10808. [PMID: 38904228 DOI: 10.1021/acs.analchem.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.
Collapse
Affiliation(s)
- Xue-Wei Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Gong-Xiang Qi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
3
|
Zhao X, He Y, Shao S, Ci Q, Chen L, Lu X, Liu Q, Chen J. CRISPR/Cas14 and G-Quadruplex DNAzyme-Driven Biosensor for Paper-Based Colorimetric Detection of African Swine Fever Virus. ACS Sens 2024; 9:2413-2420. [PMID: 38635911 PMCID: PMC11216275 DOI: 10.1021/acssensors.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The highly contagious nature and 100% fatality rate contribute to the ongoing and expanding impact of the African swine fever virus (ASFV), causing significant economic losses worldwide. Herein, we developed a cascaded colorimetric detection using the combination of a CRISPR/Cas14a system, G-quadruplex DNAzyme, and microfluidic paper-based analytical device. This CRISPR/Cas14a-G4 biosensor could detect ASFV as low as 5 copies/μL and differentiate the wild-type and mutated ASFV DNA with 2-nt difference. Moreover, this approach was employed to detect ASFV in porcine plasma. A broad linear detection range was observed, and the limit of detection in spiked porcine plasma was calculated to be as low as 42-85 copies/μL. Our results indicate that the developed paper platform exhibits the advantages of high sensitivity, excellent specificity, and low cost, making it promising for clinical applications in the field of DNA disease detection and suitable for popularization in low-resourced areas.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shengjie Shao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Qiaoqiao Ci
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Qian Liu
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3 V9, Canada
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Hu J, Yan X, Chris Le X. Label-free detection of biomolecules using inductively coupled plasma mass spectrometry (ICP-MS). Anal Bioanal Chem 2024; 416:2625-2640. [PMID: 38175283 DOI: 10.1007/s00216-023-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
Bioassays using inductively coupled plasma mass spectrometry (ICP-MS) have gained increasing attention because of the high sensitivity of ICP-MS and the various strategies of labeling biomolecules with detectable metal tags. The classic strategy to tag the target biomolecules is through direct antibody-antigen interaction and DNA hybridization, and requires the separation of the bound from the unbound tags. Label-free ICP-MS techniques for biomolecular assays do not require direct labeling: they generate detectable metal ions indirectly from specific biomolecular reactions, such as enzymatic cleavage. Here, we highlight the development of three main strategies of label-free ICP-MS assays for biomolecules: (1) enzymatic cleavage of metal-labeled substrates, (2) release of immobilized metal ions from the DNA backbone, and (3) nucleic acid amplification-assisted aggregation and release of metal tags to achieve amplified detection. We briefly describe the fundamental basis of these label-free ICP-MS assays and discuss the benefits and drawbacks of various designs. Future research is needed to reduce non-specific adsorption and minimize background and interference. Analytical innovations are also required to confront challenges faced by in vivo applications.
Collapse
Affiliation(s)
- Jianyu Hu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Xiaowen Yan
- Department of Chemistry and the MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
5
|
Yang R, Xie S, Zhou B, Guo M, Fan J, Su F, Ji Z, Chen Y, Li B. Postamplifying Cas12a Activation through Hybridization Chain Reaction-Triggered Fluorescent Nanocluster Formation for Ultrasensitive Nucleic Acid Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9890-9899. [PMID: 38353672 DOI: 10.1021/acsami.3c18732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
CRISPR/Cas12a-based biosensing is advancing rapidly; however, achieving sensitive and cost-effective reporting of Cas12a activation remains a challenge. In response, we have developed a label-free system capable of postamplifying Cas12a activation by integrating hybridization chain reaction (HCR) and DNA-copper nanoclusters (DNA-CuNCs). The trans-cleavage of Cas12a triggers a silenced HCR, leading to the in situ assembly of fluorescent DNA-CuNCs, allowing for the turn-on reporting of Cas12a activation. Without preamplification, this assay can detect DNA with a detection limit of 5 fM. Furthermore, when coupled with preamplification, the system achieves exceptional sensitivity, detecting the monkeypox virus (MPXV) plasmid at 1 copy in human serum. In a MPXV pseudovirus-based validation test, the obtained results are in agreement with those obtained by qPCR, reinforcing the robustness of this method. Our study represents the first effort to manipulate DNA-CuNC formation on HCR for highly sensitive and cost-effective reporting of Cas12a, resulting in an efficient synthetic biology-enabled sensing platform for biosafety applications.
Collapse
Affiliation(s)
- Runlin Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Siying Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
- School of Public Health, Xiamen University, Xiamen 361102, China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Mingming Guo
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Fengli Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Zhirun Ji
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
6
|
Mao K, Zhang H, Ran F, Cao H, Feng R, Du W, Li X, Yang Z. Portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification for antibiotic resistance gene ermB in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132793. [PMID: 37856955 DOI: 10.1016/j.jhazmat.2023.132793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
Wastewater is among the main sources of antibiotic resistance genes (ARGs) in the environment, but effective methods to quickly assess ARGs on-site in wastewater are lacking. Here, using the typical ARG ermB as the target, we report a portable biosensor combining CRISPR/Cas12a and loop-mediated isothermal amplification (LAMP) for the detection of ARGs. Six primers of LAMP and the crRNA of CRISPR/Cas12a were first designed to be preamplification with LAMP and lead Cas12a to recognize the ermB via base pairing. Due to the trans-cleavage activity of CRISPR/Cas12a after amplicon recognition, ssDNA probes modified with reporter molecules were used to implement a visual assay with lateral flow test strips and fluorescence. After a simple nucleic acid extraction with magnetic beads, the constructed biosensor possesses excellent sensitivity and selectivity as low as 2.75 × 103 copies/μL using fluorescence and later flow strips in wastewater. We further evaluated the community-wide prevalence of ermB in wastewater influent and found high mass loads of ermB during different months. This user-friendly and low-cost biosensor is applicable for rapid on-site ARG detection, providing a potential point-of-use method for rapid assessments of ARG abundance in wastewater from large city areas with many wastewater treatment plants and in resource-limited rural areas.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Fang Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Rida Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Du
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Xiqing Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhugen Yang
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
7
|
A renewable platform based on the entropy-driven catalytic amplification and element labeling inductively coupled plasma mass spectrometry for microRNA analysis. Anal Chim Acta 2023; 1254:341112. [PMID: 37005022 DOI: 10.1016/j.aca.2023.341112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
The element labeling inductively coupled plasma mass spectrometry (ICP-MS) strategy has been increasingly applied to the bioanalysis for various bio-targets. Herein, a renewable analysis platform with element labeling ICP-MS was firstly proposed for microRNA (miRNA) analysis. The analysis platform was established on the magnetic bead (MB) with entropy-driven catalytic (EDC) amplification. When the EDC reaction was initiated by target miRNA, numerous strands labeled with Ho element were released from MBs, and 165Ho in the supernatant detected by ICP-MS could reflect the amount of target miRNA. After detection, the platform was easily regenerated by adding strands to reassemble EDC complex on MBs. This MB platform could be used four times, and the limit of detection for miRNA-155 was 8.4 pmol L-1. Moreover, the developed regeneration strategy based on EDC reaction can be easily expanded to other renewable analysis platforms, such as, the renewable platform involving EDC and rolling circle amplification technology. Overall, this work proposed a novel regenerated bioanalysis strategy to reduce the consumption of reagent and time for probe preparation, profiting the development of bioassay based on element labeling ICP-MS strategy.
Collapse
|
8
|
Mu X, Wang X, Qin Y, Huang Y, Tian J, Zhao S. A novel label-free universal biosensing platform based on CRISPR/Cas12a for biomarker detection. Talanta 2022; 251:123795. [DOI: 10.1016/j.talanta.2022.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
|
9
|
Xie S, Qin C, Zhao F, Shang Z, Wang P, Sohail M, Zhang X, Li B. The DNA-Cu nanocluster and exonuclease I integrated label-free reporting system for CRISPR/Cas12a-based SARS-CoV-2 detection with minimized background signal. J Mater Chem B 2022; 10:6107-6117. [DOI: 10.1039/d2tb00857b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CRISPR-driven biosensing is developing rapidly, but current works mostly adopt dye-labeled ssDNA as the signal reporter, which is costly and unstable. Herein, we developed a label-free and low-background reporter for...
Collapse
|
10
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
11
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
12
|
Zhang B, Zhou J, Li M, Wei Y, Wang J, Wang Y, Shi P, Li X, Huang Z, Tang H, Song Z. Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique. Anal Bioanal Chem 2021; 413:2447-2456. [PMID: 33661348 PMCID: PMC7929911 DOI: 10.1007/s00216-021-03173-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/13/2021] [Indexed: 12/26/2022]
Abstract
The effective application of the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system in biology, medicine and other fields is hindered by the off-target effects and loci-affinity of Cas9-sgRNA, especially at a genome-wide scale. In order to eliminate the occurrence of off-target effects and evaluate loci-affinity by CRISPR/Cas9 site-specific detection and screening of high-affinity sgRNA sequences, respectively, we develop a CRISPR/Cas9-assisted reverse PCR method for site-specific detection and sgRNA sequence validation. The detection method based on PCR can be used directly in the laboratory with PCR reaction conditions, without the need for an additional detection system, and the whole process of detection can be completed within 2 h. Therefore, it can be easily popularized with a PCR instrument. Finally, this method is fully verified by detecting multiple forms of site mutations and evaluating the affinity of a variety of sgRNA sequences for the CRISPR/Cas9 system. In sum, it provides an effective new analysis tool for CRISPR/Cas9 genome editing-related research. A CRISPR/Cas9-assisted reverse PCR method was developed for Cas9/sgRNA site-specific detection and sgRNA sequence validation. The technique detects target DNA in three steps: (1) target DNA is specifically cut by a pair of Cas9/sgRNA complexes; (2) the cleaved DNA is rapidly linked by T4 DNA ligase; (3) the ligated DNA is efficiently amplified by PCR (PCR or qPCR).
Collapse
Affiliation(s)
- Beibei Zhang
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Jiamu Zhou
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Miao Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Yuanmeng Wei
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Jiaojiao Wang
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Yange Wang
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Pingling Shi
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Xiaoli Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Zixu Huang
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - He Tang
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| | - Zongming Song
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Henan Eye Institute, Henan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual Science, Zhengzhou, 450003 Henan China
| |
Collapse
|
13
|
Sun W, Wang H. Recent advances of genome editing and related technologies in China. Gene Ther 2020; 27:312-320. [DOI: 10.1038/s41434-020-0181-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/24/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
|
14
|
Uygun ZO, Yeniay L, Gi Rgi N Sağın F. CRISPR-dCas9 powered impedimetric biosensor for label-free detection of circulating tumor DNAs. Anal Chim Acta 2020; 1121:35-41. [PMID: 32493587 DOI: 10.1016/j.aca.2020.04.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 12/20/2022]
Abstract
Label-free biosensors which can be integrated into lab-on-a-chip platforms have the advantage of using small volumes for rapid and inexpensive measurements contrary to label-based technologies which are often more costly and time-consuming. In this study, graphene oxide screen printed electrodes (GPHOXE) were modified by deactivated Cas9 (dCas9) proteins and synthetic guide RNA (sgRNA) as the biorecognition receptor for label-free detection of circulating tumor DNAs (ctDNA). This was achieved by detection of a tumor related mutation (PIK3CA exon 9 mutation) via sequence-specific recognition followed by electrochemical impedance spectroscopy (EIS) analysis. The biosensor showed high specificity as there was no impedance signal for other ctDNA sequences, even the single nucleotide mismatch. dCas9-sgRNA modified biosensor demonstrated linear detection limits between 2 and 20 nM for 120 bp ctDNA's in 40 s. The calibration curve showed good linearity, LOD was calculated as 0.65 nM and LOQ was calculated as 1.92 nM. Selectivity and repeatability studies were carried out in real blood samples and the recovery was higher than 96%. In conclusion, dCas9-sgRNA was effectively immobilized and optimized on GPHOXE as the selective biorecognition receptor of this ultrafast impedimetric biosensor. The CRISPR-dCas9 powered impedimetric system showed good selectivity, high repeatability and good recovery properties. This is the first literature to report the use of CRISPR/Cas technology as a label-free tool that can be used in an impedimetric system for detection of ctDNA's.
Collapse
Affiliation(s)
- Zihni Onur Uygun
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, 35100, İzmir, Turkey.
| | - Levent Yeniay
- Ege University, Faculty of Medicine, Department of General Surgery, Bornova, 35100, İzmir, Turkey
| | - Ferhan Gi Rgi N Sağın
- Ege University, Faculty of Medicine, Department of Medical Biochemistry, Bornova, 35100, İzmir, Turkey
| |
Collapse
|
15
|
Hu J, Li Z, Zhang H, Liu R, Lv Y. Tag-Free Methodology for Ultrasensitive Biosensing of miRNA Based on Intrinsic Isotope Detection. Anal Chem 2020; 92:8523-8529. [PMID: 32340438 DOI: 10.1021/acs.analchem.0c01295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNA (miRNA), of which the abnormal intracellular expression highly associates with numerous pathological diseases, is considered as an important biomarker for early diagnosis and state monitoring of cancer. To avoid the tedious and vunerable labeling process, a series of novel label-free quantification methods for miRNA have been proposed. However, current label-free miRNA assays still require the presynthesis of a sensing unit as tags. Herein, we propose a "tag-free" methodology for miRNA quantification to realize the removal of sensing labels. Combining a concatenated-HCR (C-HCR) strategy and high-resolution inductive couple plasma mass spectrometry (HR-ICPMS) detection, we utilize phosphorus as a characteristic element to quantify the concentration of nucleotides. Benefiting from the excellent amplification performance of C-HCR and element analysis capacity of HR-ICPMS, a 13 fM limit of detection (LOD) was obtained. Ulteriorly, we verify the anti-interference performance of the proposed tag-free miRNA assay with a phosphate substrate-contained cell culture medium or nontarget miRNA. Furthermore, two cell lines of human cancer were chosen to evaluate the real biological sample analysis capacity. The good correlation data indicate promising prospects of the proposed tag-free methodology for the quantification of miRNA in tumor cells and further clinical applications.
Collapse
Affiliation(s)
- Jianyu Hu
- College of Architecture & Environment, Sichuan University, Chengdu 610064, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ziyan Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Chang W, Liu W, Shen H, Chen S, Liao P, Liu Y. Molecular AND logic gate for multiple single-nucleotide mutations detection based on CRISPR/Cas9n system-trigged signal amplification. Anal Chim Acta 2020; 1112:46-53. [DOI: 10.1016/j.aca.2020.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/26/2022]
|
17
|
Wang G, Tian W, Liu X, Ren W, Liu C. New CRISPR-Derived microRNA Sensing Mechanism Based on Cas12a Self-Powered and Rolling Circle Transcription-Unleashed Real-Time crRNA Recruiting. Anal Chem 2020; 92:6702-6708. [DOI: 10.1021/acs.analchem.0c00680] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Gaoting Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Weimin Tian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Xiaoling Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education; Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
18
|
Wang Y, Wang S, Dong N, Kang W, Li K, Nie Z. Titanium Carbide MXenes Mediated In Situ Reduction Allows Label-Free and Visualized Nanoplasmonic Sensing of Silver Ions. Anal Chem 2020; 92:4623-4629. [DOI: 10.1021/acs.analchem.0c00164] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Song Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Ningning Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Wenyuan Kang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Molecular Science and Biomedicine Laboratory, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
19
|
Gong S, Chen Y, Pan W, Li N, Tang B. An in vitro site-specific cleavage assay of CRISPR-Cas9 using a personal glucose meter. Chem Commun (Camb) 2020; 56:8850-8853. [DOI: 10.1039/d0cc03505j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Personal glucose meter has been applied to sensitively and cost-effectively detect the in vitro site-specific cleavage efficiency of CRISPR-Cas9.
Collapse
Affiliation(s)
- Shaohua Gong
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Yuanyuan Chen
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
| |
Collapse
|