1
|
Li SS, Xue CD, Hu SY, Li YJ, Chen XM, Zhao Y, Qin KR. Long-Term Stable and Multifeature Microfluidic Impedance Flow Cytometry Based on a Constricted Channel for Single-Cell Mechanical Phenotyping. Anal Chem 2024; 96:17754-17764. [PMID: 39431959 DOI: 10.1021/acs.analchem.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The microfluidic impedance flow cytometer (m-IFC) using constricted microchannels is an appealing choice for the high-throughput measurement of single-cell mechanical properties. However, channels smaller than the cells are susceptible to irreversible blockage, extremely affecting the stability of the system and the throughput. Meanwhile, the common practice of extracting a single quantitative index, i.e., total cell passage time, through the constricted part is inadequate to decipher the complex mechanical properties of individual cells. Herein, this study presents a long-term stable and multifeature m-IFC based on a constricted channel for single-cell mechanical phenotyping. The blockage problem is effectively overcome by adding tiny xanthan gum (XG) polymers. The cells can pass through the constricted channel at a flow rate of 500 μL/h without clogging, exhibiting high throughput (∼240 samples per second) and long-term stability (∼2 h). Moreover, six detection regions were implemented to capture the multiple features related to the whole process of a single cell passing through the long-constricted channel, e.g., creep, friction, and relaxation stages. To verify the performance of the multifeature m-IFC, cells treated with perturbations of microtubules and microfilaments within the cytoskeleton were detected, respectively. It suggests that the extracted features provide more comprehensive clues for single-cell analysis in structural and mechanical transformation. Overall, our proposed multifeature m-IFC exhibits the advantages of nonclogging and high throughput, which can be extended to other cell types for nondestructive and real-time mechanical phenotyping in cost-effective applications.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Chun-Dong Xue
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Si-Yu Hu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yong-Jiang Li
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Xiao-Ming Chen
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| | - Yan Zhao
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- Department of Stomach Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P. R. China
| | - Kai-Rong Qin
- Institute of Oncology, Cancer Hospital of Dalian University of Technology, Shenyang, Liaoning 110042, P. R. China
- School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116024, P. R. China
| |
Collapse
|
2
|
Guo Y, Ye H, Huang L. Design and optimization of microchannel for enhancement of the intensity of induced signal in particle/cell impedance measurement. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:074703. [PMID: 38975798 DOI: 10.1063/5.0196728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
The measured impedance signal of a single particle or cell in a microchannel is of the μA level, which is a challenge for measuring such weak signals. Therefore, it is necessary to improve the intensity for expanding the applications of impedance measurement. In this paper, we analyzed the impact of geometric parameters of microchannel on output signal intensity by using the three-dimensional finite element method. In comparison to conventional microchannels, which are distributed at a uniform height, the microchannels in this design use the height difference to enhance the signal intensity. By analyzing the effects of the geometric dimensions of the constriction channel, main channel height, radius of particles, types of cells, shapes of particles with different ellipticities, and particles spacing on the current signal, we concluded the optimal dimensions of these parameters to improve the intensity of the induced current signal. Through the fabrication of the optimized size of device and experimental demonstration, it is verified that the current signal intensity caused by the particle with a diameter of 10 µm is nearly twice that of the conventional structure with a height of 20 µm, which proves the correctness of the optimization results and the feasibility of this work. In addition, the performance of the device was verified by measuring the mixtures of different size particles as well as non-viable and viable yeast cells.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, and The School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haisheng Ye
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, and The School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Liang Huang
- Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, and The School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Storti F, Bonfadini S, Bondelli G, Vurro V, Lanzani G, Criante L. Photocell-Based Optofluidic Device for Clogging-Free Cell Transit Time Measurements. BIOSENSORS 2024; 14:154. [PMID: 38667147 PMCID: PMC11047832 DOI: 10.3390/bios14040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Measuring the transit time of a cell forced through a bottleneck is one of the most widely used techniques for the study of cell deformability in flow. It in turn provides an accessible and rapid way of obtaining crucial information regarding cell physiology. Many techniques are currently being investigated to reliably retrieve this time, but their translation to diagnostic-oriented devices is often hampered by their complexity, lack of robustness, and the bulky external equipment required. Herein, we demonstrate the benefits of coupling microfluidics with an optical method, like photocells, to measure the transit time. We exploit the femtosecond laser irradiation followed by chemical etching (FLICE) fabrication technique to build a monolithic 3D device capable of detecting cells flowing through a 3D non-deformable constriction which is fully buried in a fused silica substrate. We validated our chip by measuring the transit times of pristine breast cancer cells (MCF-7) and MCF-7 cells treated with Latrunculin A, a drug typically used to increase their deformability. A difference in transit times can be assessed without the need for complex external instrumentation and/or demanding computational efforts. The high throughput (4000-10,000 cells/min), ease of use, and clogging-free operation of our device bring this approach much closer to real scenarios.
Collapse
Affiliation(s)
- Filippo Storti
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Silvio Bonfadini
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
| | - Gaia Bondelli
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Vito Vurro
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
| | - Guglielmo Lanzani
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luigino Criante
- Centre for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, 20134 Milano, Italy; (F.S.); (S.B.); (G.B.); (V.V.); (G.L.)
| |
Collapse
|
4
|
Shimada T, Fujino K, Yasui T, Kaji N, Ueda Y, Fujii K, Yukawa H, Baba Y. Resistive Pulse Sensing on a Capillary-Assisted Microfluidic Platform for On-Site Single-Particle Analyses. Anal Chem 2023; 95:18335-18343. [PMID: 38064273 DOI: 10.1021/acs.analchem.3c02539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Capillary-assisted flow is valuable for utilizing microfluidics-based electrical sensing platforms at on-site locations by simplifying microfluidic operations and system construction; however, incorporating capillary-assisted flow in platforms requires easy microfluidic modification and stability over time for capillary-assisted flow generation and sensing performance. Herein, we report a capillary-assisted microfluidics-based electrical sensing platform using a one-step modification of polydimethylsiloxane (PDMS) with polyethylene glycol (PEG). As a model of electrical sensing platforms, this work focused on resistive pulse sensing (RPS) using a micropore in a microfluidic chip for label-free electrical detection of single analytes, and filling the micropore with an electrolyte is the first step to perform this RPS. The PEG-PDMS surfaces remained hydrophilic after ambient storage for 30 d and assisted in generating an electrolyte flow for filling the micropore with the electrolyte. We demonstrated the successful detection and size analysis of micrometer particles and bacterial cells based on RPS using the microfluidic chip stored in a dry state for 30 d. Combining this capillary-assisted microfluidic platform with a portable RPS system makes on-site detection and analysis of single pathogens possible.
Collapse
Affiliation(s)
- Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Keiko Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Noritada Kaji
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yasuyuki Ueda
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Kentaro Fujii
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
5
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Takahashi H, Baba Y, Yasui T. Oxide nanowire microfluidics addressing previously-unattainable analytical methods for biomolecules towards liquid biopsy. Chem Commun (Camb) 2021; 57:13234-13245. [PMID: 34825908 DOI: 10.1039/d1cc05096f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanowire microfluidics using a combination of self-assembly and nanofabrication technologies is expected to be applied to various fields due to its unique properties. We have been working on the fabrication of nanowire microfluidic devices and the development of analytical methods for biomolecules using the unique phenomena generated by the devices. The results of our research are not just limited to the development of nanospace control with "targeted dimensions" in "targeted arrangements" with "targeted materials/surfaces" in "targeted spatial locations/structures" in microfluidic channels, but also cover a wide range of analytical methods for biomolecules (extraction, separation/isolation, and detection) that are impossible to achieve with conventional technologies. Specifically, we are working on the extraction technology "the cancer-related microRNA extraction method in urine," the separation technology "the ultrafast and non-equilibrium separation method for biomolecules," and the detection technology "the highly sensitive electrical measurement method." These research studies are not just limited to the development of biomolecule analysis technology using nanotechnology, but are also opening up a new academic field in analytical chemistry that may lead to the discovery of new pretreatment, separation, and detection principles.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
7
|
Choi G, Tang Z, Guan W. Microfluidic high-throughput single-cell mechanotyping: Devices and
applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| |
Collapse
|
8
|
Terada M, Ide S, Naito T, Kimura N, Matsusaki M, Kaji N. Label-Free Cancer Stem-like Cell Assay Conducted at a Single Cell Level Using Microfluidic Mechanotyping Devices. Anal Chem 2021; 93:14409-14416. [PMID: 34628861 DOI: 10.1021/acs.analchem.1c02316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical phenotype of cells is an intrinsic property of individual cells. In fact, this property could serve as a label-free, non-destructive, diagnostic marker of the state of cells owing to its remarkable translational potential. A microfluidic device is a strong candidate for meeting the demand of this translational research as it can be used to diagnose a large population of cells at a single cell level in a high-throughput manner, without the need for off-line pretreatment operations. In this study, we investigated the mechanical phenotype of the human colon adenocarcinoma cell, HT29, which is known to be a heterogeneous cell line with both multipotency and self-renewal abilities. This type of cancer stem-like cell (CSC) is believed to be the unique originators of all tumor cells and may serve as the leading cause of cancer metastasis and drug resistance. By combining consecutive constrictions and microchannels with an ionic current sensing system, we found a high heterogeneity of cell deformability in the population of HT29 cells. Moreover, based on the level of aldehyde dehydrogenase (ALDH) activity and the expression level of CD44s, which are biochemical markers that suggest the multipotency of cells, the high heterogeneity of cell deformability was concluded to be a potential mechanical marker of CSCs. The development of label-free and non-destructive identification and collection techniques for CSCs has remarkable potential not only for cancer diagnosis and prognosis but also for the discovery of a new treatment for cancer.
Collapse
Affiliation(s)
- Miyu Terada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sachiko Ide
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toyohiro Naito
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Niko Kimura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
9
|
Fajrial AK, Liu K, Gao Y, Gu J, Lakerveld R, Ding X. Characterization of Single-Cell Osmotic Swelling Dynamics for New Physical Biomarkers. Anal Chem 2021; 93:1317-1325. [PMID: 33253534 DOI: 10.1021/acs.analchem.0c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Characterization of cell physical biomarkers is vital to understand cell properties and applicable for disease diagnostics. Current methods used to analyze physical phenotypes involve external forces to deform the cells. Alternatively, internal tension forces via osmotic swelling can also deform the cells. However, an established assumption contends that the forces generated during hypotonic swelling concentrated on the plasma membrane are incapable of assessing the physical properties of nucleated cells. Here, we utilized an osmotic swelling approach to characterize different types of nucleated cells. Using a microfluidic device for cell trapping arrays with truncated hanging micropillars (CellHangars), we isolated single cells and evaluated the swelling dynamics during the hypotonic challenge at 1 s time resolution. We demonstrated that cells with different mechanical phenotypes showed unique swelling dynamics signature. Different types of cells can be classified with an accuracy of up to ∼99%. We also showed that swelling dynamics can detect cellular mechanical property changes due to cytoskeleton disruption. Considering its simplicity, swelling dynamics offers an invaluable label-free physical biomarker for cells with potential applications in both biological studies and clinical practice.
Collapse
Affiliation(s)
- Apresio K Fajrial
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Kun Liu
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Yu Gao
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States
| | - Junhao Gu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoyun Ding
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, UCB 427, Boulder, Colorado 80309, United States.,Biomedical Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
10
|
Zhang X, Wei X, Wei Y, Chen M, Wang J. The up-to-date strategies for the isolation and manipulation of single cells. Talanta 2020; 218:121147. [PMID: 32797903 DOI: 10.1016/j.talanta.2020.121147] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Due to the large cellular heterogeneity, the strategies for the isolation and manipulation of single cells have been pronounced indispensable in the fields of disease diagnostics, drug delivery, and cancer biology at the single-cell resolution. Herein, an overview of the up-to-date techniques for precise manipulation/separation and analysis of single-cell is accomplished, these include the various approaches for the isolation and detection of individual cells in flow cytometry, microfluidic systems, micromodule systems, and others. In addition, the advanced application of these protocols is discussed. In particular, a few designs are highlighted for visualization, non-invasion, and intelligentization in single cell analysis, i.e., imaging flow cytometry, label-free microfluidic platform, single-cell capillary probe, and other related techniques. At the present, the main barriers in the various schemes for single cell manipulation which limited their practical applications are their cumbersome construction and single-functionality. The future opportunities and outstanding challenges in the isolation/manipulation of single cells are depicted.
Collapse
Affiliation(s)
- Xuan Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Yujia Wei
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Mingli Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China; Analytical and Testing Center, Northeastern University, Shenyang, Liaoning, 110819, China.
| | - Jianhua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning, 110819, China.
| |
Collapse
|
11
|
Suzuki T, Kaji N, Yasaki H, Yasui T, Baba Y. Mechanical Low-Pass Filtering of Cells for Detection of Circulating Tumor Cells in Whole Blood. Anal Chem 2020; 92:2483-2491. [PMID: 31922717 DOI: 10.1021/acs.analchem.9b03939] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The detection of circulating tumor cells (CTCs) from liquid biopsies using microfluidic devices is attracting a considerable amount of attention as a new, less-invasive cancer diagnostic and prognostic method. One of the drawbacks of the existing antibody-based detection systems is the false negatives for epithelial cell adhesion molecule detection of CTCs. Here we report a mechanical low-pass filtering technique based on a microfluidic constriction and electrical current sensing system for the novel CTC detection in whole blood without any specific antigen-antibody interaction or biochemical modification of the cell surface. The mechanical response of model cells of CTCs, such as HeLa, A549, and MDA-MB-231 cells, clearly demonstrated different behaviors from that of Jurkat cells, a human T-lymphocyte cell line, when they passed through the 6-μm wide constriction channel. A 6-μm wide constriction channel was determined as the optimum size to identify CTCs in whole blood with an accuracy greater than 95% in tens of milliseconds. The mechanical filtering of cells at a single cell level was achieved from whole blood without any pretreatment (e.g., dilution of lysing) and prelabeling (e.g., fluorophores or antibodies).
Collapse
Affiliation(s)
| | - Noritada Kaji
- JST, PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan.,Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka, Nishi-ku , Fukuoka 819-0395 , Japan
| | | | - Takao Yasui
- JST, PRESTO , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| | - Yoshinobu Baba
- Health Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Hayashi-cho 2217-14 , Takamatsu 761-0395 , Japan.,School of Pharmacy, College of Pharmacy , Kaohsiung Medical University , 100, Shih-Chuan First Road , Kaohsiung , 807 , Taiwan , R.O.C
| |
Collapse
|