1
|
Xiao J, Yuan K, Tao Y, Wang Y, Yang X, Cui J, Wei D, Zhang Z. High-Throughput Effect-Directed Monitoring Platform for Specific Toxicity Quantification of Unknown Waters: Lead-Caused Cell Damage as a Model Using a DNA Hybrid Chain-Reaction-Induced AuNPs@aptamer Self-Assembly Assay. SENSORS (BASEL, SWITZERLAND) 2023; 23:6877. [PMID: 37571660 PMCID: PMC10422636 DOI: 10.3390/s23156877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
A high-throughput cell-based monitoring platform was fabricated to rapidly measure the specific toxicity of unknown waters, based on AuNPs@aptamer fluorescence bioassays. The aptamer is employed in the platform for capturing the toxicity indicator, wherein hybrid chain-reaction (HCR)-induced DNA functional gold nanoparticle (AuNPs) self-assembly was carried out for signal amplification, which is essential for sensitively measuring the sub-lethal effects caused by target compounds. Moreover, the excellent stability given by the synthesized DNA nanostructure provides mild conditions for the aptamer thus used to bind the analyte. Herein, ATP was treated as a toxicity indicator and verified using lead-caused cell damage as a model. Under optimized conditions, excellent performance for water sample measurement was observed, yielding satisfactory accuracy (recovery rate: 82.69-114.20%; CV, 2.57%-4.65%) and sensitivity (LOD, 0.26 µM) without sample pretreatment other than filtration, indicating the method's simplicity, high efficiency, and reliability. Most importantly, this bioassay could be used as a universal platform to encourage its application in the rapid quantification of specific toxicity in varied sources of samples, ranging from drinking water to highly contaminated wastewater.
Collapse
Affiliation(s)
- Jiaxuan Xiao
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (J.X.); (Y.T.); (Y.W.); (X.Y.); (D.W.)
| | - Kuijing Yuan
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China;
| | - Yu Tao
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (J.X.); (Y.T.); (Y.W.); (X.Y.); (D.W.)
| | - Yuhan Wang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (J.X.); (Y.T.); (Y.W.); (X.Y.); (D.W.)
| | - Xiaofeng Yang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (J.X.); (Y.T.); (Y.W.); (X.Y.); (D.W.)
| | - Jian Cui
- Institute of Botany, Jiangsu Province and Chinese Academy Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China;
| | - Dali Wei
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (J.X.); (Y.T.); (Y.W.); (X.Y.); (D.W.)
| | - Zhen Zhang
- School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (J.X.); (Y.T.); (Y.W.); (X.Y.); (D.W.)
| |
Collapse
|
2
|
Cai Q, Yin T, Ye Y, Jie G, Zhou H. Versatile Photoelectrochemical Biosensing for Hg 2+ and Aflatoxin B1 Based on Enhanced Photocurrent of AgInS 2 Quantum Dot-DNA Nanowires Sensitizing NPC-ZnO Nanopolyhedra. Anal Chem 2022; 94:5814-5822. [PMID: 35380040 DOI: 10.1021/acs.analchem.1c05250] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Eliminating false positives or negatives in analysis has been a challenge. Herein, a phenomenon of polarity-switching photocurrent of AgInS2 quantum dot (QD)-DNA nanowires reversing nitrogen-doped porous carbon-ZnO (NPC-ZnO) nanopolyhedra was found for the first time, and a versatile photoelectrochemical (PEC) biosensor with a reversed signal was innovatively proposed for dual-target detection. NPC-ZnO is a photoactive material with excellent PEC properties, while AgInS2 QDs as a photosensitive material match NPC-ZnO in the energy level, which not only promotes the transfer of photogenerated carriers but also switches the direction of PEC current. Furthermore, in order to prevent spontaneous agglomeration of AgInS2 (AIS) QDs and improve its utilization rate, a new multiple-branched DNA nanowire was specially designed to assemble AgInS2 QDs for constructing amplified signal probes, which not only greatly increased the load of AgInS2 QDs but also further enhanced the photoelectric signal. When the target Hg2+-induced cyclic amplification process generated abundant RDNA, the DNA nanowire signal probe with plenty of QDs was linked to the NPC-ZnO/electrode by RDNA, generating greatly amplified polarity-reversed photocurrent for signal "ON" detection of Hg2+. After specific binding of the target (aflatoxin B1, AFB1) to its aptamer, the signal probes of AIS QD-DNA nanowires were released, realizing signal "OFF" assay of AFB1. Thus, the proposed new PEC biosensor provides a versatile method for detection of dual targets and also effectively avoids both false positive and negative phenomena in the assay process, which has great practical application potential in both environmental and food analysis.
Collapse
Affiliation(s)
- Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Tengyue Yin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yuhang Ye
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
3
|
Li H, Li Q, Zhao S, Wang X, Li F. Aptamer-Target Recognition-Promoted Ratiometric Electrochemical Strategy for Evaluating the Microcystin-LR Residue in Fish without Interferences. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:680-686. [PMID: 35012307 DOI: 10.1021/acs.jafc.1c06476] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Given the significance of food safety, it is highly urgent to develop a sensitive yet reliable sensor for the practical analysis of algal toxins. As most of the developed sensors are disturbed by interfering substances and the target toxin is detected in a single-signal manner based on the immunoassay technology. Herein, we developed an aptamer-based dual-signal ratiometric electrochemical sensor for the sensitive and accurate analysis of microcystin-LR (MC-LR), using it as a proof-of-concept analyte. Methylene blue-tagged ssDNA (MB-ssDNA) was immobilized at the gold electrode surface accompanied with the absence of ferrocene-tagged ssDNA (Fc-ssDNA), resulting in a high differential pulse voltammetry (DPV) current of MB and a low DPV current of Fc. The recognition of MB-ssDNA by MC-LR stimulated the formation of MC-LR@MB-ssDNA, which induced the removal of MB-ssDNA from the electrode and the exposure of SH-ssDNA, enabling Fc-ssDNA to be captured at the electrode surface via nucleic acid hybridization. In comparison with MC-LR deficiency, the DPV signal of MB dropped along with an improved DPV signal of Fc, contributing to the ratiometric detection of MC-LR, with the limit of detection down to 0.0015 nM. Furthermore, this ratiometric electrochemical sensor was successfully explored to assess the bioaccumulated amount of MC-LR in the liver and meat of fish. The aptamer-based ratiometric strategy to develop an electrochemical MC-LR assay will offer a promising avenue to develop high-performance sensors, and the sensor will find more useful application in MC-LR-related aquatic product safety studies.
Collapse
Affiliation(s)
- Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qian Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Suixin Zhao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Xuemei Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| |
Collapse
|
4
|
Zhao W, Jiang Y, Zhou H, Zhang S. Hairpin-functionalized DNA tetrahedra for miRNA imaging in living cells via self-assembly to form dendrimers. Analyst 2022; 147:2074-2079. [DOI: 10.1039/d2an00080f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A DNA tetrahedron-based intramolecular catalytic hairpin self-assembly platform that uses fluorescence signals to image miRNAs in live cells for accurate tumor cell identification.
Collapse
Affiliation(s)
- Wenjing Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Yao Jiang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Huimin Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
5
|
Wang W, Gao Y, Wang W, Zhang J, Li Q, Wu ZS. Ultrasensitive Electrochemical Detection of cancer-Related Point Mutations Based on Surface-Initiated Three-Dimensionally Self-Assembled DNA Nanostructures from Only Two Palindromic Probes. Anal Chem 2021; 94:1029-1036. [PMID: 34932325 DOI: 10.1021/acs.analchem.1c03991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sensitive and selective detection of proto-oncogenes, especially recognition of point mutation, is of great importance in cancer diagnosis. Here, a ligation-mediated technique is demonstrated for the construction of an intertwined three-dimensional DNA nanosheet (3D SDN) on an electrode surface from only two palindromic hairpin probes (HP1 and HP2), creating a powerful electrochemical biosensor (E-biosensor) for the detection of the p53 gene. First, a capturing probe (CP) is immobilized on an electrode surface via Au-S chemistry, forming an electrochemical sensing interface. In the presence of the target p53 (T), the triggering probe is covalently linked to CP by a ligase. Moreover, target hybridization/ligation/dehybridization process is repeated, amplifying the target hybridization event and increasing the content of surface-confined triggering fragments. As a result, HP1 is opened and in turn interacts with HP2, forming intertwined 3D SDN where HP1 and HP2 are alternately arranged in parallel. Common hybridization and interaction between palindromic fragments are responsible for the assembly in the horizontal and vertical directions, respectively. An electrochemical indicator, methylene blue (MB), can be inserted into 3D SDN, generating a strong electrochemical signal. Utilizing the 3D SDN-based E-biosensor, the target DNA is detected down to 3 fM with a linear response range from 10 fM to 10 nM. Single point mutations are reliably identified even in fetal bovine serum and cellular homogenate. Because of the several advantages of simple design, good universality, inexpensive instrumentation, high assay specificity, and sensitivity, the 3D SDN-based E-biosensor is expected to provide a potential platform for screening point mutation required by early clinical diagnostics and medical research.
Collapse
Affiliation(s)
- Weijun Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Yansha Gao
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Wenqing Wang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Jingjing Zhang
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Qian Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 305108, China
| |
Collapse
|
6
|
Pan Y, Lu B, Peng Y, Wang M, Deng Y, Yin Y, Yang J, Li G. A simple method to assay tumor cells based on target-initiated steric hindrance. Chem Commun (Camb) 2021; 57:6522-6525. [PMID: 34105555 DOI: 10.1039/d1cc02532e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have proposed a simple electrochemical method in this work for the assay of tumor cells through their own steric hindrance effect. Specifically, tumor cells can block the catalysis of terminal deoxynucleotidyl transferase to the aptamer previously immobilized on the electrode surface. By making use of the hindrance effect, cancer cells can be quantitatively analyzed in the range from 1.6 × 102 to 1.6 × 106 cells per mL without complicated design or cumbersome operation, while the detection limit can be about 53 cells per mL. This method can also show satisfactory performance in complex environments, indicating its potential in clinical application.
Collapse
Affiliation(s)
- Yanhong Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Bing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Peng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Minghui Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Ying Deng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Yongmei Yin
- Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China and Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Hao Q, Xu Q, Niu S, Ding C, Luo X. Anti-Fouling Magnetic Beads Combined with Signal Amplification Strategies for Ultra-Sensitive and Selective Electrochemiluminescence Detection of MicroRNAs in Complex Biological Media. Anal Chem 2021; 93:10679-10687. [PMID: 34288646 DOI: 10.1021/acs.analchem.1c02186] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, an electrochemiluminescence (ECL) microRNA biosensor based on anti-fouling magnetic beads (MBs) and two signal amplification strategies was developed. The newly designed anti-fouling dendritic peptide was wrapped on the surfaces of MBs to make them resistant to nonspecific adsorption of biomolecules in complex biological samples so as to realize accurate and selective target recognition. One of the amplification strategies was achieved through nucleic acid cycle amplification based on the DNAzyme on the surfaces of MBs. Then, the output DNA generated by the nucleic acid cycle amplification program stimulated the hybrid chain reaction (HCR) process on the modified electrode surface to generate the other amplification of the ECL response. Titanium dioxide nanoneedles (TiO2 NNs), as a co-reaction accelerator of the Ru(bpy)2(cpaphen)2+ and tripropylamine (TPrA) system, were wrapped with the electrodeposited polyaniline (PANI) on the electrode surface to enhance the ECL intensity of Ru(bpy)2(cpaphen)2+. The conducting polymer PANI can not only immobilize the TiO2 NNs but also improve the conductivity of the modified electrodes. The biosensor exhibited ultra-high sensitivity and excellent selectivity toward the detection of miRNA 21, with a detection limit of 0.13 fM. More importantly, with the anti-fouling MBs as a unique separation tool, this ECL biosensor was capable of assaying targets in complex biological media such as serum and cell lysate.
Collapse
Affiliation(s)
- Qiuxia Hao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Qingzhang Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shuyan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Shandong Key Laboratory of Biochemical Analysis; Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| |
Collapse
|
8
|
Huang W, Zhou Y, Zhan D, Lai G. Homogeneous biorecognition reaction-induced assembly of DNA nanostructures for ultrasensitive electrochemical detection of kanamycin antibiotic. Anal Chim Acta 2021; 1154:338317. [PMID: 33736811 DOI: 10.1016/j.aca.2021.338317] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/16/2023]
Abstract
By the employment of a homogeneous biorecognition reaction to induce the assembled formation of DNA nanostructures at an electrode, herein we develop a novel biosensing method for the ultrasensitive electrochemical detection of kanamycin (Kana) antibiotic. A DNA complex consisting of Kana-aptamer and a hairpin DNA with an exposed 3'-end was first designed for conducting the homogeneous reaction with Kana in the presence of exonuclease I (Exo I). It resulted in the production of a hairpin DNA with a blunt terminus, which could be used for triggering the assembled formation of a layer of DNA nanostructures with orderly distribution and abundant biotin sites at a gold electrode. Then, high-content methylene blue and horseradish peroxidase (HRP)-functionalized gold nanotags would be captured onto the electrode to realize the electrocatalytic signal transduction. Due to the Exo I and HRP-assisted dual signal amplification, a very low detection limit of 9.1 fg mL-1 was obtained for the Kana assay along with a very wide linear range over five-order of magnitude. Considering the excellent performance of the method, it exhibits a promising prospect for practical applications.
Collapse
Affiliation(s)
- Wan Huang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Yue Zhou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Danyan Zhan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China
| | - Guosong Lai
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, China.
| |
Collapse
|
9
|
Chen Z, Liu X, Liu D, Li F, Wang L, Liu S. Ultrasensitive Electrochemical DNA Biosensor Fabrication by Coupling an Integral Multifunctional Zirconia-Reduced Graphene Oxide-Thionine Nanocomposite and Exonuclease I-Assisted Cleavage. Front Chem 2020; 8:521. [PMID: 32733846 PMCID: PMC7363972 DOI: 10.3389/fchem.2020.00521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022] Open
Abstract
In this work, a simple but sensitive electrochemical DNA biosensor for nucleic acid detection was developed by taking advantage of exonuclease (Exo) I-assisted cleavage for background reduction and zirconia-reduced graphene oxide-thionine (ZrO2-rGO-Thi) nanocomposite for integral DNA recognition, signal amplification, and reporting. The ZrO2-rGO nanocomposite was obtained by a one-step hydrothermal synthesis method. Then, thionine was adsorbed onto the rGO surface, via π-π stacking, as an excellent electrochemical probe. The biosensor fabrication is very simple, with probe DNA immobilization and hybridization recognition with the target nucleic acid. Then, the ZrO2-rGO-Thi nanocomposite was captured onto an electrode via the multicoordinative interaction of ZrO2 with the phosphate group on the DNA skeleton. The adsorbed abundant thionine molecules onto the ZrO2-rGO nanocomposite facilitated an amplified electrochemical response related with the target DNA. Since upon the interaction of the ZrO2-rGO-Thi nanocomposite with the probe DNA an immobilized electrode may also occur, an Exo I-assisted cleavage was combined to remove the unhybridized probe DNA for background reduction. With the current proposed strategy, the target DNA related with P53 gene could be sensitively assayed, with a wide linear detection range from 100 fM to 10 nM and an attractive low detection limit of 24 fM. Also, the developed DNA biosensor could differentiate the mismatched targets from complementary target DNA. Therefore, it offers a simple but effective biosensor fabrication strategy and is anticipated to show potential for applications in bioanalysis and medical diagnosis.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xueqian Liu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Dengren Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Fang Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Li Wang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Shufeng Liu
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
10
|
Wang G, Han R, Li Q, Han Y, Luo X. Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Anal Chem 2020; 92:7186-7193. [DOI: 10.1021/acs.analchem.0c00738] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guixiang Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Rui Han
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qun Li
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Yinfeng Han
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271021, China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|