1
|
Wu P, He X, Fan J, Tai Y, Zheng D, Yao Y, Sun S, Luo Y, Chen J, Hu WW, Ying B, Luo F, Niu Q, Sun X, Li Y. Electrochemical cytosensors for non-invasive liquid biopsy: Detection procedures and technologies for circulating tumor cells. Biosens Bioelectron 2024; 267:116818. [PMID: 39353368 DOI: 10.1016/j.bios.2024.116818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/08/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Each year, millions of new cancer cases and cancer-related deaths underscore the urgent need for effective, affordable screening methods. Circulating tumor cells (CTCs), which derived from tumors and shedding into bloodstream, are considered promising biomarkers for liquid biopsy due to their unique biological significance and the substantial volume of supporting research. Among many advanced CTCs detection methods, electrochemical sensing is rapidly developing due to their high selectivity, high sensitivity, low cost, and rapid detection capability, well meeting the growing demand for non-invasive liquid biopsy. This review focuses on the entire procedure of detecting CTCs using electrochemical cytosensors, starting from sample preparation, detailing bio-recognition elements for capturing CTCs, highlighting design strategies of cytosensor, and discussing the prospects and challenges of electrochemical cytosensor applications.
Collapse
Affiliation(s)
- Peilin Wu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Xun He
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Jiwen Fan
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Yunze Tai
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yongchao Yao
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Yao Luo
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Jie Chen
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Wenchuang Walter Hu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Binwu Ying
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China
| | - Fengming Luo
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qian Niu
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China.
| | - Xuping Sun
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| | - Yi Li
- Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Dong Z, Wang Y, Xu G, Liu B, Wang Y, Reboud J, Jajesniak P, Yan S, Ma P, Liu F, Zhou Y, Jin Z, Yang K, Huang Z, Zhuo M, Jia B, Fang J, Zhang P, Wu N, Yang M, Cooper JM, Chang L. Genetic and phenotypic profiling of single living circulating tumor cells from patients with microfluidics. Proc Natl Acad Sci U S A 2024; 121:e2315168121. [PMID: 38683997 PMCID: PMC11087790 DOI: 10.1073/pnas.2315168121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Accurate prediction of the efficacy of immunotherapy for cancer patients through the characterization of both genetic and phenotypic heterogeneity in individual patient cells holds great promise in informing targeted treatments, and ultimately in improving care pathways and clinical outcomes. Here, we describe the nanoplatform for interrogating living cell host-gene and (micro-)environment (NICHE) relationships, that integrates micro- and nanofluidics to enable highly efficient capture of circulating tumor cells (CTCs) from blood samples. The platform uses a unique nanopore-enhanced electrodelivery system that efficiently and rapidly integrates stable multichannel fluorescence probes into living CTCs for in situ quantification of target gene expression, while on-chip coculturing of CTCs with immune cells allows for the real-time correlative quantification of their phenotypic heterogeneities in response to immune checkpoint inhibitors (ICI). The NICHE microfluidic device provides a unique ability to perform both gene expression and phenotypic analysis on the same single cells in situ, allowing us to generate a predictive index for screening patients who could benefit from ICI. This index, which simultaneously integrates the heterogeneity of single cellular responses for both gene expression and phenotype, was validated by clinically tracing 80 non-small cell lung cancer patients, demonstrating significantly higher AUC (area under the curve) (0.906) than current clinical reference for immunotherapy prediction.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Yusen Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Gaolian Xu
- Shanghai Sci-Tech InnoCenter for Infection and Immunity, Shanghai200438, China
| | - Bing Liu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Engineering Medicine, Beihang University, Beijing100191, China
| | - Julien Reboud
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Pawel Jajesniak
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Shi Yan
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Pingchuan Ma
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Yuhao Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Zhiyuan Jin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Kuan Yang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Zhaocun Huang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Bo Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Medical Oncology, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Jian Fang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Nan Wu
- State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing100142, China
| | - Mingzhu Yang
- Beijing Research Institute of Mechanical Equipment, Beijing100143, China
| | - Jonathan M. Cooper
- Division of Biomedical Engineering, University of Glasgow, G12 8LTGlasgow, United Kingdom
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing100191, China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei230032, China
| |
Collapse
|
3
|
Chen Y, Tang Z, Liu J, Ren C, Zhang Y, Xu H, Li Q, Zhang Q. A multilocus-dendritic boronic acid functionalized magnetic nanoparticle for capturing circulating tumor cells in the peripheral blood of mice with metastatic breast cancer. Anal Chim Acta 2024; 1297:342381. [PMID: 38438224 DOI: 10.1016/j.aca.2024.342381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/28/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Dynamic fluctuation of circulating tumor cells (CTCs) can serve as an indicator of tumor progression. However, the sensitive isolation of CTCs remains extremely challenging due to their rarity and heterogeneity. Against this dilemma, dendritic boronic acid-modified magnetic nanoparticles (MNPs) were prepared in this study, and polyethyleneimine (PEI) was utilized as a scaffold to significantly increase the number of boronic acid moieties. Then the novel developed material was applied to monitor the number of CTCs in mice with metastatic breast cancer to evaluate the therapeutic effects of matrine (Mat), doxorubicin (Dox), and Mat in combination with Dox. RESULTS Compared to the low binding capacity of a single boronic acid ligand, dendritic boronic acid shows enhanced sensitivity in binding to sialic acid (SA), which is overexpressed in CTCs. The results showed that the capture efficiency of this modified material could achieve 94.7% and successfully captured CTCs in blood samples from mice with metastatic breast cancer. The CTC counts were consistent with the results of the pathologic examination, demonstrating the reliability and utility of the method. SIGNIFICANCE The dendritic boronic acid nanomaterials prepared in this study showed high specificity, sensitivity, and accuracy for cancer cell capture. The approach is expected to provide new insights into cancer diagnosis, personalized therapy, and optimization of treatment regimens.
Collapse
Affiliation(s)
- Yue Chen
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhengkun Tang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiajia Liu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuanyang Ren
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yiwen Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huarong Xu
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Li
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qian Zhang
- National and Local Joint Engineering Laboratory for Key Technology of Chinese Material Medica Quality Control, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Zhang Y, Wang X, Wen J, Zhu X. WiFi-based non-contact human presence detection technology. Sci Rep 2024; 14:3605. [PMID: 38351067 PMCID: PMC10864388 DOI: 10.1038/s41598-024-54077-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
In the swiftly evolving landscape of Internet of Things (IoT) technology, the demand for adaptive non-contact sensing has seen a considerable surge. Traditional human perception technologies, such as vision-based approaches, often grapple with problems including lack of sensor versatility and sub-optimal accuracy. To address these issues, this paper introduces a novel, non-contact method for human presence perception, relying on WiFi. This innovative approach involves a sequential process, beginning with the pre-processing of collected Channel State Information (CSI), followed by feature extraction, and finally, classification. By establishing signal models that correspond to varying states, this method enables the accurate perception and recognition of human presence. Remarkably, this technique exhibits a high level of precision, with sensing accuracy reaching up to 99[Formula: see text]. The potential applications of this approach are extensive, proving to be particularly beneficial in contexts such as smart homes and healthcare, amongst various other everyday scenarios. This underscores the significant role this novel method could play in enhancing the sophistication and effectiveness of human presence detection and recognition systems in the IoT era.
Collapse
Affiliation(s)
- Yang Zhang
- School of Economics and Management, Shanghai Polytechnic University, Shanghai, 201209, China.
| | - Xuechun Wang
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, 430068, China
| | - Jinghao Wen
- School of Computer Science, Central China Normal University, Wuhan, 430079, China
| | - Xianxun Zhu
- School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
5
|
Liquid Crystal Droplet-Based Biosensors: Promising for Point-of-Care Testing. BIOSENSORS 2022; 12:bios12090758. [PMID: 36140143 PMCID: PMC9496589 DOI: 10.3390/bios12090758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 01/07/2023]
Abstract
The development of biosensing platforms has been impressively accelerated by advancements in liquid crystal (LC) technology. High response rate, easy operation, and good stability of the LC droplet-based biosensors are all benefits of the long-range order of LC molecules. Bioprobes emerged when LC droplets were combined with biotechnology, and these bioprobes are used extensively for disease diagnosis, food safety, and environmental monitoring. The LC droplet biosensors have high sensitivity and excellent selectivity, making them an attractive tool for the label-free, economical, and real-time detection of different targets. Portable devices work well as the accessory kits for LC droplet-based biosensors to make them easier to use by anyone for on-site monitoring of targets. Herein, we offer a review of the latest developments in the design of LC droplet-based biosensors for qualitative target monitoring and quantitative target analysis.
Collapse
|
6
|
Du Z, Li Y, Chen B, Wang L, Hu Y, Wang X, Zhang W, Yang X. Label-free detection and enumeration of rare circulating tumor cells by bright-field image cytometry and multi-frame image correlation analysis. LAB ON A CHIP 2022; 22:3390-3401. [PMID: 35708469 DOI: 10.1039/d2lc00190j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification and enumeration of circulating tumor cells (CTCs) in peripheral blood are proved to correlate with the progress of metastatic cancer and can provide valuable information for diagnosis and monitoring of cancer. Here, we introduce a bright-field image cytometry (BFIC) technique, assisted by a multi-frame image correlation (MFIC) algorithm, as a label-free approach for tumor cell detection in peripheral blood. For this method, images of flowing cells in a wide channel were continuously recorded and cell types were determined simultaneously using a deep neural network of YOLO-V4 with an average precision (AP) of 98.63%, 99.04%, and 98.95% for cancer cell lines HT29, A549, and KYSE30, respectively. The use of the wide microfluidic channel (400 μm width) allowed for a high throughput of 50 000 cells per min without clogging. Then erroneous or missed cell classifications caused by imaging angle differences or accidental misinterpretations in single frames were corrected by the multi-frame correlation analysis. This further improved the AP to 99.40%, 99.52%, and 99.47% for HT29, A549, and KYSE30, respectively. Meanwhile, cell counting was also accomplished in this dynamic process. Moreover, our imaging cytometry method can readily detect as few as 10 tumor cells from 100 000 white blood cells and was unaffected by the EMT process. Furthermore, CTCs from 8 advanced-stage cancer clinical samples were also successfully detected, while none for 6 healthy control subjects. Although this method is implemented for CTCs, it can also be used for the detection of other rare cells.
Collapse
Affiliation(s)
- Ziqiang Du
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Ya Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Bing Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Lulu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yu Hu
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Xu Wang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wenchang Zhang
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Xiaonan Yang
- School of Information Engineering, Zhengzhou University, Zhengzhou 450001, China.
- Key Lab of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, China.
| |
Collapse
|
7
|
Rapid and efficient capturing of circulating tumor cells from breast cancer Patient's whole blood via the antibody functionalized microfluidic (AFM) chip. Biosens Bioelectron 2022; 201:113965. [PMID: 35016111 DOI: 10.1016/j.bios.2022.113965] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
Accurate enumeration of circulating tumor cells (CTCs) in cancer patient's blood functions as a form of "liquid biopsy", which is pivotal for cancer screening, prognosis, and diagnosis. Herein, we demonstrate a novel antibody functionalized microfluidic (AFM) chip that rapidly and accurately qualifies CTCs from breast cancer patient's whole blood. The AFM chip consists of three buffering zones, and four main capturing zones filled with equilateral triangular pillars and periodically distributed obstacles. We validate the AFM chip with three Epithelial cell adhesion molecule (EpCAM) positive cancer cell lines, including breast (MCF-7), prostate (PC3), and lung cancer cell lines (A549), achieving capture efficiencies of 99.5%, 98.5%, and 96.72%, respectively, at a flow rate of 0.6 mL/hour. We further confirm the efficacy of the AFM chip with five advanced breast cancer patients' whole blood to capture EpCAM+/CK19+/CD45-/DAPI + CTCs. Interestingly, high number of CTCs were identified from each patient's 1 mL whole blood (595-2270), The AFM chip is highly efficient at rapidly capturing CTCs from cancer patients' whole blood without requiring extra equipment, which is critically beneficial for clinical application.
Collapse
|
8
|
Takahashi H, Baba Y, Yasui T. Oxide nanowire microfluidics addressing previously-unattainable analytical methods for biomolecules towards liquid biopsy. Chem Commun (Camb) 2021; 57:13234-13245. [PMID: 34825908 DOI: 10.1039/d1cc05096f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanowire microfluidics using a combination of self-assembly and nanofabrication technologies is expected to be applied to various fields due to its unique properties. We have been working on the fabrication of nanowire microfluidic devices and the development of analytical methods for biomolecules using the unique phenomena generated by the devices. The results of our research are not just limited to the development of nanospace control with "targeted dimensions" in "targeted arrangements" with "targeted materials/surfaces" in "targeted spatial locations/structures" in microfluidic channels, but also cover a wide range of analytical methods for biomolecules (extraction, separation/isolation, and detection) that are impossible to achieve with conventional technologies. Specifically, we are working on the extraction technology "the cancer-related microRNA extraction method in urine," the separation technology "the ultrafast and non-equilibrium separation method for biomolecules," and the detection technology "the highly sensitive electrical measurement method." These research studies are not just limited to the development of biomolecule analysis technology using nanotechnology, but are also opening up a new academic field in analytical chemistry that may lead to the discovery of new pretreatment, separation, and detection principles.
Collapse
Affiliation(s)
- Hiromi Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Quantum Life Science, National Institutes for Quantum Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.,Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
9
|
Maeda Y, Yoshino T, Kogiso A, Negishi R, Takabayashi T, Tago H, Lim TK, Harada M, Matsunaga T, Tanaka T. Lensless imaging-based discrimination between tumour cells and blood cells towards circulating tumour cell cultivation. Analyst 2021; 146:7327-7335. [PMID: 34766603 DOI: 10.1039/d1an01414e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumour cells (CTCs) are recognized as important markers for cancer research. Nonetheless, the extreme rarity of CTCs in blood samples limits their availability for multiple characterization. The cultivation of CTCs is still technically challenging due to the lack of information of CTC proliferation, and it is difficult for conventional microscopy to monitor CTC cultivation owing to low throughput. In addition, for precise monitoring, CTCs need to be distinguished from the blood cells which co-exist with CTCs. Lensless imaging is an emerging technique to visualize micro-objects over a wide field of view, and has been applied for various cytometry analyses including blood tests. However, discrimination between tumour cells and blood cells was not well studied. In this study, we evaluated the potential of the lensless imaging system as a tool for monitoring CTC cultivation. Cell division of model tumour cells was examined using the lensless imaging system composed of a simple setup. Subsequently, we confirmed that tumour cells, JM cells (model lymphocytes), and erythrocytes exhibited cell line-specific patterns on the lensless images. After several discriminative parameters were extracted, discrimination between the tumour cells and other blood cells was demonstrated based on linear discriminant analysis. We also combined the highly efficient CTC recovery device, termed microcavity array, with the lensless-imaging to demonstrate recovery, monitoring and discrimination of the tumour cells spiked into whole blood samples. This study indicates that lensless imaging can be a powerful tool to investigate CTC proliferation and cultivation.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Atsushi Kogiso
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Ryo Negishi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Tomohiro Takabayashi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Hikaru Tago
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| | - Tae-Kyu Lim
- Malcom Co., Ltd, 4-15-10, Honmachi, Shibuya-ku, Tokyo, 151-0071, Japan
| | - Manabu Harada
- Malcom Co., Ltd, 4-15-10, Honmachi, Shibuya-ku, Tokyo, 151-0071, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan. .,Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15, Natsushima-cho, Yokosuka, Kanagawa, 237-0061, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
10
|
Terada M, Ide S, Naito T, Kimura N, Matsusaki M, Kaji N. Label-Free Cancer Stem-like Cell Assay Conducted at a Single Cell Level Using Microfluidic Mechanotyping Devices. Anal Chem 2021; 93:14409-14416. [PMID: 34628861 DOI: 10.1021/acs.analchem.1c02316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mechanical phenotype of cells is an intrinsic property of individual cells. In fact, this property could serve as a label-free, non-destructive, diagnostic marker of the state of cells owing to its remarkable translational potential. A microfluidic device is a strong candidate for meeting the demand of this translational research as it can be used to diagnose a large population of cells at a single cell level in a high-throughput manner, without the need for off-line pretreatment operations. In this study, we investigated the mechanical phenotype of the human colon adenocarcinoma cell, HT29, which is known to be a heterogeneous cell line with both multipotency and self-renewal abilities. This type of cancer stem-like cell (CSC) is believed to be the unique originators of all tumor cells and may serve as the leading cause of cancer metastasis and drug resistance. By combining consecutive constrictions and microchannels with an ionic current sensing system, we found a high heterogeneity of cell deformability in the population of HT29 cells. Moreover, based on the level of aldehyde dehydrogenase (ALDH) activity and the expression level of CD44s, which are biochemical markers that suggest the multipotency of cells, the high heterogeneity of cell deformability was concluded to be a potential mechanical marker of CSCs. The development of label-free and non-destructive identification and collection techniques for CSCs has remarkable potential not only for cancer diagnosis and prognosis but also for the discovery of a new treatment for cancer.
Collapse
Affiliation(s)
- Miyu Terada
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sachiko Ide
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toyohiro Naito
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Niko Kimura
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noritada Kaji
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
11
|
Microfluidic Assessment of Drug Effects on Physical Properties of Androgen Sensitive and Non-Sensitive Prostate Cancer Cells. MICROMACHINES 2021; 12:mi12050532. [PMID: 34067167 PMCID: PMC8151345 DOI: 10.3390/mi12050532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/22/2022]
Abstract
The identification and treatment of androgen-independent prostate cancer are both challenging and significant. In this work, high-throughput deformability cytometry was employed to assess the effects of two anti-cancer drugs, docetaxel and enzalutamide, on androgen-sensitive prostate cancer cells (LNCaP) and androgen-independent prostate cancer cells (PC-3), respectively. The quantified results show that PC-3 and LNCaP present not only different intrinsic physical properties but also different physical responses to the same anti-cancer drug. PC-3 cells possess greater stiffness and a smaller size than LNCaP cells. As the docetaxel concentration increases, PC-3 cells present an increase in stiffness and size, but LNCaP cells only present an increase in stiffness. As the enzalutamide concentration increases, PC-3 cells present no physical changes but LNCaP cells present changes in both cell size and deformation. These results demonstrated that cellular physical properties quantified by the deformability cytometry are effective indicators for identifying the androgen-independent prostate cancer cells from androgen-sensitive prostate cancer cells and evaluating drug effects on these two types of prostate cancer.
Collapse
|
12
|
Hu X, Zang X, Lv Y. Detection of circulating tumor cells: Advances and critical concerns. Oncol Lett 2021; 21:422. [PMID: 33850563 PMCID: PMC8025150 DOI: 10.3892/ol.2021.12683] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the main cause of cancer-related death and the major challenge in cancer treatment. Cancer cells in circulation are termed circulating tumor cells (CTCs). Primary tumor metastasis is likely due to CTCs released into the bloodstream. These CTCs extravasate and form fatal metastases in different organs. Analyses of CTCs are clarifying the biological understanding of metastatic cancers. These data are also helpful to monitor disease progression and to inform the development of personalized cancer treatment-based liquid biopsy. However, CTCs are a rare cell population with 1-10 CTCs per ml and are difficult to isolate from blood. Numerous approaches to detect CTCs have been developed based on the physical and biological properties of the cells. The present review summarizes the progress made in detecting CTCs.
Collapse
Affiliation(s)
- Xiuxiu Hu
- School of Medical Technology, Jiangsu College of Nursing, Huai'an, Jiangsu 22300, P.R. China
| | - Xiaojuan Zang
- Department of Ultrasonography, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| | - Yanguan Lv
- Clinical Medical Laboratory, Huai'an Maternity and Child Health Care Hospital, Huai'an, Jiangsu 223002, P.R. China
| |
Collapse
|
13
|
Han Z, Chen L, Zhang S, Wang J, Duan X. Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry. Anal Chem 2020; 92:14568-14575. [DOI: 10.1021/acs.analchem.0c02854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ziyu Han
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Lincai Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|