1
|
Li Y, Zhai Y, Fu B, He Y, Feng Y, Ma F, Lu H. A comprehensive N-glycome map of porcine sperm membrane before and after capacitation. Carbohydr Polym 2024; 335:122084. [PMID: 38616102 DOI: 10.1016/j.carbpol.2024.122084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
Mapping the N-glycome of porcine sperm before and after sperm capacitation is important for understanding the rearrangement of glycoconjugates during capacitation. In this work, we characterized the N-glycome on the membranes of 18 pairs of fresh porcine sperm before capacitation and porcine sperm after capacitation by MALDI-MS (Matrix-assisted laser desorption/ionization-mass spectrometry). A total of 377 N-glycans were detected and a comprehensive N-glycome map of porcine sperm membranes before and after capacitation was generated, which presents the largest N-glycome dataset of porcine sperm cell membranes. Statistical analysis revealed a significantly higher level of high mannose glycosylation and a significantly lower level of fucosylation, galactosylation, and α-2,6-NeuAc after capacitation, which is further verified by flow cytometry and lectin blotting. This research reveals new insights into the relationship between N-glycosylation variations and sperm capacitation, including the underlying mechanisms of the capacitation process.
Collapse
Affiliation(s)
- Yueyue Li
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yujia Zhai
- Department of Medical Genetics/Prenatal Diagnostic Center, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan 610041, China
| | - Bing Fu
- Department of Chemistry, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Yuanlin He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Haojie Lu
- Liver Cancer Institute, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Chemistry, NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China.
| |
Collapse
|
2
|
Wang L, Han Y, Zhang Y, Geng H, Zhu Z, Chen P, Cui X, Wang X, Sun C. In-depth profiling of carbohydrate isomers in biological tissues by chemical derivatization-assisted mass spectrometry imaging. Anal Chim Acta 2023; 1278:341741. [PMID: 37709472 DOI: 10.1016/j.aca.2023.341741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Carbohydrates play crucial regulatory roles in various physiological and pathological processes. However, the low ionization efficiency and the presence of linkage pattern, monosaccharide composition and anomeric configuration isomers make their in-depth analysis very challenging, especially for heterogeneous biological tissues. In this study, we propose a high-sensitive and isomer-specific imaging approach to visualize the spatial distributions of monosaccharide and disaccharide isomers by integrating chemical derivatization and matrix-assisted laser desorption/ionization tandem mass spectrometry imaging (MALDI-MS2I). 2-Pyridinecarbohydrazide (PYD) is developed as a novel derivatization reagent which can not only improves the MS sensitivity of carbohydrates, but also enables the identification and visualization of ketose and aldose monosaccharide isomers, as well as linkage pattern, monosaccharide composition and anomeric configuration disaccharide isomers by mass spectrometry imaging of isomer-specific MS/MS fragment ions. Moreover, we build quantitative MALDI-MS2 and MALDI-MS2I methods for disaccharide isomers based on the diagnostic fragment ions, and good linear relationships could be achieved both in solution and on glass slides. We expect that this study should provide new ideas for in-depth profiling of the spatial signatures of carbohydrates in biological tissues and lay the foundation for a deeper understanding of carbohydrates' structure.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yuhao Han
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiaoqing Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
3
|
Hanamatsu H, Miura Y, Nishikaze T, Yokota I, Homan K, Onodera T, Hayakawa Y, Iwasaki N, Furukawa JI. Simultaneous and sialic acid linkage-specific N- and O-linked glycan analysis by ester-to-amide derivatization. Glycoconj J 2023; 40:259-267. [PMID: 36877384 DOI: 10.1007/s10719-023-10109-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive β-elimination in the presence of hydroxylamine. O-glycans released by non-reductive β-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.
Collapse
Affiliation(s)
- Hisatoshi Hanamatsu
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan.
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8638, Japan.
| | - Yoshiaki Miura
- Sumitomo Bakelite Co., Ltd., 5-8, Tennoz Parkside Building, Higashi-Shinagawa 2-chome, Shinagawa-ku, 140-0002, Tokyo, Japan
| | - Takashi Nishikaze
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, 604-8511, Kyoto, Japan
| | - Ikuko Yokota
- Institute for Glyco-core Research (iGCORE), Nagoya University, 464-8601, Nagoya, Japan
| | - Kentaro Homan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Tomohiro Onodera
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Yoshihiro Hayakawa
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, 604-8511, Kyoto, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Hokkaido, 060-8638, Sapporo, Japan.
- Institute for Glyco-core Research (iGCORE), Nagoya University, 464-8601, Nagoya, Japan.
| |
Collapse
|
4
|
Park CS, Kang M, Kim A, Moon C, Kim M, Kim J, Yang S, Jang L, Jang JY, Kim HH. Fragmentation stability and retention time-shift obtained by LC-MS/MS to distinguish sialylated N-glycan linkage isomers in therapeutic glycoproteins. J Pharm Anal 2023; 13:305-314. [PMID: 37102108 PMCID: PMC10124117 DOI: 10.1016/j.jpha.2023.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Sialylated N-glycan isomers with α2-3 or α2-6 linkage(s) have distinctive roles in glycoproteins, but are difficult to distinguish. Wild-type (WT) and glycoengineered (mutant) therapeutic glycoproteins, cytotoxic T lymphocyte-associated antigen-4-immunoglobulin (CTLA4-Ig), were produced in Chinese hamster ovary cell lines; however, their linkage isomers have not been reported. In this study, N-glycans of CTLA4-Igs were released, labeled with procainamide, and analyzed by liquid chromatography-tandem mass spectrometry (MS/MS) to identify and quantify sialylated N-glycan linkage isomers. The linkage isomers were distinguished by comparison of 1) intensity of the N-acetylglucosamine ion to the sialic acid ion (Ln/Nn) using different fragmentation stability in MS/MS spectra and 2) retention time-shift for a selective m/z value in the extracted ion chromatogram. Each isomer was distinctively identified, and each quantity (>0.1%) was obtained relative to the total N-glycans (100%) for all observed ionization states. Twenty sialylated N-glycan isomers with only α2-3 linkage(s) in WT were identified, and each isomer's sum of quantities was 50.4%. Furthermore, 39 sialylated N-glycan isomers (58.8%) in mono- (3 N-glycans; 0.9%), bi- (18; 48.3%), tri- (14; 8.9%), and tetra- (4; 0.7%) antennary structures of mutant were obtained, which comprised mono- (15 N-glycans; 25.4%), di- (15; 28.4%), tri- (8; 4.8%), and tetra- (1; 0.2%) sialylation, respectively, with only α2-3 (10 N-glycans; 4.8%), both α2-3 and α2-6 (14; 18.4%), and only α2-6 (15; 35.6%) linkage(s). These results are consistent with those for α2-3 neuraminidase-treated N-glycans. This study generated a novel plot of Ln/Nn versus retention time to distinguish sialylated N-glycan linkage isomers in glycoprotein.
Collapse
Affiliation(s)
- Chi Soo Park
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Kang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ahyeon Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Chulmin Moon
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Mirae Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jieun Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Subin Yang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Leeseul Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji Yeon Jang
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ha Hyung Kim
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|
5
|
Li Y, Wang H, Xu F, Ling L, Ding CF. Linkage-specific identification and quantification of sialylated glycans by TIMS-TOF MS through conjugation with metal complexes. Talanta 2023; 253:123995. [PMID: 36228553 DOI: 10.1016/j.talanta.2022.123995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Mass spectrometry is an indispensable technology for the characterization of glycans. However, specific identification of isomeric glycans especially sialylated glycan isomers using mass spectrometry alone is challenging, which is why orthogonal techniques are needed. Aiming to achieve simple, rapid, and specific identification of sialyl-linkage isomers, we reported herein a trapped ion mobility spectrometry time of flight mass spectrometry (TIMS-TOF MS) method for linkage-specific identification of sialylated glycans through conjugation with metal complexes. Two pairs of sialyl-linkage isomers including 3'/6'-sialyllactose (3'/6'-SL) and 3'/6'-sialyl-N-acetyllactosamine (3'/6'-SLN) conjugated with the diethylenetriamine (DETA) or 2,2'; 6',2″-terpyridine (Terpy) ligand and transition metal ion (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, or Zn2+) were studied by TIMS-TOF MS. The two pairs of sialylated isomers were successfully separated with a metal-ligand system, and relative quantification of sialyl-linkage isomers was demonstrated. In addition, the linkage of the sialic acid moiety can also be distinguished with MS/MS in combination with the metal-ligand system.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huanhuan Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling Ling
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Chuan-Fan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
7
|
Jin W, Lu Y, Li C, Zou M, Chen Q, Nan L, Wei M, Wang C, Huang L, Wang Z. Improved Glycoqueuing Strategy Reveals Novel α2,3-Linked Di-/Tri-Sialylated Oligosaccharide Isomers in Human Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13996-14004. [PMID: 36278935 DOI: 10.1021/acs.jafc.2c04499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sialylated human milk oligosaccharides (SHMOs) possess unique biological activities. Qualitative and quantitative analyses of SHMOs at different lactation stages are limited by interference from neutral oligosaccharides, glycan structural complexity, and low detection sensitivity. Herein, our previously developed glycoqueuing strategy was improved and applied to enable an isomer-specific quantitative comparison of SHMOs between colostrum milk (CM) and mature milk (MM). A total of 49 putative structures were determined, including 1 α2,6-linked and 13 α2,3-linked isomers separated from seven newly discovered SHMO compositions. The content of most oligosaccharides was more than 50% lower in MM than in CM, and α2,3-sialylation was observed in 43.74% of SHMOs from CM and 22.95% of SHMOs from MM. Finally, the fucosylation level of the SHMOs increased from 16.45 to 22.28% with prolonged lactation. These findings provide the basis for further studies on the structure-activity relationship of SHMOs and a blueprint to improve infant formula.
Collapse
Affiliation(s)
- Wanjun Jin
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
- College of Life Science, Yuncheng University, Yuncheng 044000, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Cheng Li
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinghui Chen
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Lijing Nan
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Ming Wei
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| |
Collapse
|
8
|
She YM, Dai S, Tam RY. Highly sensitive characterization of non-human glycan structures of monoclonal antibody drugs utilizing tandem mass spectrometry. Sci Rep 2022; 12:15109. [PMID: 36068283 PMCID: PMC9448817 DOI: 10.1038/s41598-022-19488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/30/2022] [Indexed: 11/08/2022] Open
Abstract
Glycosylation is an important attribute of monoclonal antibodies (mAbs) for assessing manufacturing quality. Analysis of non-human glycans containing terminal galactose-α1,3-galactose and N-glycolylneuraminic acid is essential due to the potential immunogenicity and insufficient efficacy caused by mAb expression in non-human mammalian cells. Using parallel sequencing of isobaric glycopeptides and isomeric glycans that were separated by reversed-phase and porous graphitic carbon LC, we report a highly sensitive LC MS/MS method for the comprehensive characterization of low-abundance non-human glycans and their closely related structural isomers. We demonstrate that the straightforward use of high-abundance diagnostic ions and complementary fragments under the positive ionization low-energy collision-induced dissociation is a universal approach to rapidly discriminate branch-linkage structures of biantennary glycans. Our findings reveal the structural diversity of non-human glycans and sulfation of α-galactosylated glycans, providing both an analytical method and candidate structures that could potentially be used in the crucial quality control of therapeutic mAb products.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Canada.
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Roger Y Tam
- Centre for Biologics Evaluation, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, Canada.
| |
Collapse
|
9
|
Ren W, Bian Q, Cai Y. Mass spectrometry-based N-glycosylation analysis in kidney disease. Front Mol Biosci 2022; 9:976298. [PMID: 36072428 PMCID: PMC9442644 DOI: 10.3389/fmolb.2022.976298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/14/2022] Open
Abstract
Kidney disease is a global health concern with an enormous expense. It is estimated that more than 10% of the population worldwide is affected by kidney disease and millions of patients would progress to death prematurely and unnecessarily. Although creatinine detection and renal biopsy are well-established tools for kidney disease diagnosis, they are limited by several inevitable defects. Therefore, diagnostic tools need to be upgraded, especially for the early stage of the disease and possible progression. As one of the most common post-translational modifications of proteins, N-glycosylation plays a vital role in renal structure and function. Deepening research on N-glycosylation in kidney disease provides new insights into the pathophysiology and paves the way for clinical application. In this study, we reviewed recent N-glycosylation studies on several kidney diseases. We also summarized the development of mass spectrometric methods in the field of N-glycoproteomics and N-glycomics.
Collapse
Affiliation(s)
- Weifu Ren
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Bian
- Department of Nephrology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yan Cai
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Pujić I, Perreault H. Recent advancements in glycoproteomic studies: Glycopeptide enrichment and derivatization, characterization of glycosylation in SARS CoV2, and interacting glycoproteins. MASS SPECTROMETRY REVIEWS 2022; 41:488-507. [PMID: 33393161 DOI: 10.1002/mas.21679] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Proteomics studies allow for the determination of the identity, amount, and interactions of proteins under specific conditions that allow the biological state of an organism to ultimately change. These conditions can be either beneficial or detrimental. Diseases are due to detrimental changes caused by either protein overexpression or underexpression caused by as a result of a mutation or posttranslational modifications (PTM), among other factors. Identification of disease biomarkers through proteomics can be potentially used as clinical information for diagnostics. Common biomarkers to look for include PTM. For example, aberrant glycosylation of proteins is a common marker and will be a focus of interest in this review. A common way to analyze glycoproteins is by glycoproteomics involving mass spectrometry. Due to factors such as micro- and macroheterogeneity which result in a lower abundance of each version of a glycoprotein, it is difficult to obtain meaningful results unless rigorous sample preparation procedures are in place. Microheterogeneity represents the diversity of glycans at a single site, whereas macroheterogeneity depicts glycosylation levels at each site of a protein. Enrichment and derivatization of glycopeptides help to overcome these limitations. Over the time range of 2016 to 2020, several methods have been proposed in the literature and have contributed to drastically improve the outcome of glycosylation analysis, as presented in the sampling surveyed in this review. As a current topic in 2020, glycoproteins carried by pathogens can also cause disease and this is seen with SARS CoV2, causing the COVID-19 pandemic. This review will discuss glycoproteomic studies of the spike glycoprotein and interacting proteins such as the ACE2 receptor.
Collapse
Affiliation(s)
- Ivona Pujić
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Jezková P, Skřičková J, Wimmer G, Zelinková J, Zdráhal Z, Lattová E. Differentiation of Sialyl Linkages Using a Combination of Alkyl Esterification and Phenylhydrazine Derivatization: Application for N-Glycan Profiling in the Sera of Patients with Lung Cancer. Anal Chem 2022; 94:6736-6744. [PMID: 35471013 DOI: 10.1021/acs.analchem.2c00105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alterations in oligosaccharides and types of sialic acid (SA) attachments have been associated with different pathological states. Matrix-assisted laser desorption mass spectrometry (MS) is commonly used for glycosylation studies. However, native sialylated glycans are suppressed or not detected during MS experiments. Consequently, different approaches have been employed to neutralize the negative charge of the carboxyl group. In this study, we present the advantage of phenylhydrazine (PHN) labeling for the detection and efficient discrimination of SA linkages when this derivatization follows alkyl esterification. As expected, PHN-labeled sialylated oligosaccharides with the 2,6-linkage type can be easily recognized according to the additional shift in mass corresponding to the presence of a methyl or ethyl group. Surprisingly, oligosaccharides with the 2,3-linked SA residue instead of a lactone were detected carrying the second PHN unit. This was beneficial as no further processing after esterification was needed to stabilize the lactone form. Moreover, during tandem mass experiments, all modified glycans produced favorable fragmentation patterns with a coherent recognition of SA linkages. Although both types of esterification, herein called the EST-PHN approach, provided comparable results, methylation exhibited marginally higher linkage specificity than ethyl esterification. The simplicity and effectiveness of the methodology are demonstrated on the model compound, sialyllactose, and its applicability for biological studies is presented on N-glycan profiling in the sera of lung cancer patients.
Collapse
Affiliation(s)
- Petra Jezková
- Central European Institute for Technology, Masaryk University, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Jana Skřičková
- Department of Respiratory Diseases and TB, University Hospital, 625 00 Brno, Czech Republic
| | - Gejza Wimmer
- Institute of Measurement Science, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Jana Zelinková
- Central European Institute for Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute for Technology, Masaryk University, 625 00 Brno, Czech Republic.,National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Erika Lattová
- Central European Institute for Technology, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
12
|
Cheng M, Shu H, Yang M, Yan G, Zhang L, Wang L, Wang W, Lu H. Fast Discrimination of Sialylated N-Glycan Linkage Isomers with One-Step Derivatization by Microfluidic Capillary Electrophoresis-Mass Spectrometry. Anal Chem 2022; 94:4666-4676. [PMID: 35258917 DOI: 10.1021/acs.analchem.1c04760] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Linkage isomers (α-2,3- or α-2,6-linkage) of sialylated N-glycans are involved in the emergence and progression of some diseases, so they are of great significance for diagnosing and monitoring diseases. However, the qualitative and quantitative analysis of sialylated N-glycan linkage isomers remains challenging due to their low abundance and limited isomeric separation techniques. Herein, we developed a novel strategy integrating one-step sialic acid derivatization, positive charge-sensitive separation and highly sensitive detection based on microfluidic capillary electrophoresis-mass spectrometry (MCE-MS) for fast and specific analysis of α-2,3- and α-2,6-linked sialylated N-glycan isomers. A kind of easily charged long-chain amino compound was screened first for one-step sialic acid derivatization so that only α-2,3- and α-2,6-linked isomers can be quickly and efficiently separated within 10 min by MCE due to the difference in structural conformation, whose separation mechanism was further theoretically supported by molecular dynamic simulation. In addition, different sialylated N-glycans were separated in order according to the number of sialic acids, so that a migration time-based prediction of the number of sialic acids was achieved. Finally, the sialylated N-glycome of human serum was profiled within 10 min and 6 of the 52 detected sialylated N-glycans could be potential diagnostic biomarkers of cervical cancer (CC), whose α-2,3- and α-2,6-linked isomers were distinguished by α-2,3Neuraminidase S.
Collapse
Affiliation(s)
- Mengxia Cheng
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Hong Shu
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Maohua Yang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Liang Wang
- 908 Device Inc., Boston, Massachusetts 02210, United States
| | - Wenning Wang
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haojie Lu
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
13
|
Feng X, Shu H, Zhang S, Peng Y, Zhang L, Cao X, Wei L, Lu H. Relative Quantification of N-Glycopeptide Sialic Acid Linkage Isomers by Ion Mobility Mass Spectrometry. Anal Chem 2021; 93:15617-15625. [PMID: 34779613 DOI: 10.1021/acs.analchem.1c02803] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sialic acids decorate the surface of glycoproteins and play important roles in a variety of pathological processes. Although the mass spectrometry (MS) based linkage-specific analysis of sialylated N-glycopeptide is developing rapidly, quantitative analysis of these isomers still remains a challenge. Herein, we reported a novel quantitative strategy that can unambiguously identify and relatively quantify linkage-specific N-glycopeptides using ion mobility mass spectrometry (IM-MS). Without the assistance of derivatization, this method can relatively quantify sialic acid isomers of intact glycopeptides by using their characteristic fragment ions in IM-MS. Moreover, good linearity (R2 > 0.99) of relative quantification within a dynamic range of 2 orders of magnitude and high reproducibility (coefficient of variation (CV) < 10%, n = 3) were demonstrated. Finally, our results illustrated the aberrant sialylation of haptoglobin (Hp) in hepatocellular carcinoma (HCC), where the ratios of α2,3 to α2,6 sialylation of seven N-glycopeptides were found to be significantly altered (p < 0.01) in HCC individuals (n = 27) compared with healthy controls (n = 27).
Collapse
Affiliation(s)
- Xiaoxiao Feng
- Institutes of Biomedical Sciences & Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Hong Shu
- Department of Clinical Laboratory, Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, People's Republic of China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai 200032, People's Republic of China
| | - Ye Peng
- Institutes of Biomedical Sciences & Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Lei Zhang
- Institutes of Biomedical Sciences & Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Xinyi Cao
- Institutes of Biomedical Sciences & Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Liming Wei
- Institutes of Biomedical Sciences & Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China.,Department of Chemistry & NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Haojie Lu
- Institutes of Biomedical Sciences & Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China.,Department of Chemistry & NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
14
|
Peng Y, Gu B, Sun Z, Li Y, Zhang Y, Lu H. Linkage-selective derivatization for glycosylation site- and glycoform-specific characterization of sialic acid isomers using mass spectrometry. Chem Commun (Camb) 2021; 57:9590-9593. [PMID: 34546253 DOI: 10.1039/d1cc04142h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we developed a linkage-selective derivatization approach for the differentiation and relative quantification of α-2,3- and α-2,6-linked sialic acids in a site- and glycoform-specific manner. Linkage-selective derivatization with isotope molecules discriminates the isomeric glycopeptides easily using MS and provided a tool for biomarker discovery using the quantitative analysis of isomeric glycopeptides.
Collapse
Affiliation(s)
- Ye Peng
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. .,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Bing Gu
- Laboratory Medicine of Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdo 510000, China.
| | - Zhenyu Sun
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Yueyue Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. .,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China. .,Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China
| |
Collapse
|
15
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
16
|
Chen L, Wu J, Yan F, Ju H. Monose-modified organic electrochemical transistors for cell surface glycan analysis via competitive recognition to enzyme-labeled lectin. Mikrochim Acta 2021; 188:252. [PMID: 34255200 DOI: 10.1007/s00604-021-04918-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/27/2021] [Indexed: 01/19/2023]
Abstract
A competitive strategy for glycan determination on cell surface with organic electrochemical transistors (OECTs) has been developed. The carboxylic multi-wall carbon nanotubes were firstly immobilized on the gate interface to cross-link the specific monose with adipic dihydrazide as the linker, which could then competitively recognize horseradish peroxidase (HRP)-labeled lectin with the target monose on the cell surface. The HRP captured on the gate interface through the affinity of lectin to monose finally catalyzed the reduction of hydrogen peroxide to produce the output current signal for detection of cell surface monose under the optimal gate voltage of 0.9 V. Using mannose and galactose groups as the target models, HRP-labeled concanavalin A and peanut agglutinin were used to competitively recognize these groups on both cell surface and gate interface, respectively. The amounts of mannose and galactose on HeLa cells were measured to be 3.41 × 108 and 2.92 × 108 molecules per cell, respectively. The changes of the mannose and galactose expressions upon external stimulation were also observed with the proposed biosensors, which showed consistent results with flow cytometric analysis, indicating that the OECT-based biosensor is suitable for analysis of different glycan expressions on cell surface. Graphical abstract.
Collapse
Affiliation(s)
- Lizhen Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Feng Yan
- Department of Physics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
17
|
Guo X, Shang Y, Lv Y, Bai H, Ma Q. Suspect Screening of Fentanyl Analogs Using Matrix-Assisted Ionization and a Miniature Mass Spectrometer with a Custom Expandable Mass Spectral Library. Anal Chem 2021; 93:10152-10159. [PMID: 34254788 DOI: 10.1021/acs.analchem.1c01117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reliable identification of fentanyl and its analogs is of great significance for public security. However, with the growing prevalence of fentanyl compounds, current analytical strategies cannot fully meet the need for fast and high-throughput detection. In this study, a simple, rapid, and on-site analytical protocol was developed based on a miniature mass spectrometer. A dramatically simplified workflow was implemented using matrix-assisted ionization, bypassing complex sample pretreatment and chromatographic separation. The tandem mass spectrometry (MS/MS) capability afforded by the miniature ion trap mass spectrometer facilitated the investigation of fragmentation patterns for 49 fentanyl analogs during collision-induced dissociation, revealing valuable information on marker fragment ions and characteristic neutral loss. Calculations on Laplacian bond order values further verified the mass spectrometric behavior. A computation-assisted expandable mass spectral library was constructed in-house for fentanyl compounds. Smart suspect screening was carried out based on the full-scan MS and MS/MS data. The present study demonstrates an appealing potential for forensic applications, enabling streamlined screening for the presence of illicit fentanyl compounds at the point of seizures of suspect samples.
Collapse
Affiliation(s)
- Xiangyu Guo
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yuhan Shang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Yueguang Lv
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Bai
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
18
|
Cheng M, Shu H, Peng Y, Feng X, Yan G, Zhang L, Yao J, Bao H, Lu H. Specific Analysis of α-2,3-Sialylated N-Glycan Linkage Isomers by Microchip Capillary Electrophoresis-Mass Spectrometry. Anal Chem 2021; 93:5537-5546. [PMID: 33752328 DOI: 10.1021/acs.analchem.1c00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sialylated N-glycan isomers with α-2,3 and α-2,6 linkages play crucial and distinctive roles in diverse physiological and pathological processes. Changes of α-2,3-linked sialic acids in sialylated N-glycans are especially important in monitoring the initiation and progression of diseases. However, the specific analysis of α-2,3-sialylated N-glycan linkage isomers remains challenging due to their extremely low abundance and technical limitations in separation and detection. Herein, we designed an integrated strategy that combines linkage-specific derivatization and a charge-sensitive separation method based on microfluidic chip capillary electrophoresis-mass spectrometry (microchip CE-MS) for specific analysis of α-2,3-sialylated N-glycan linkage isomers for the first time. The α-2,6- and α-2,3-sialic acids were selectively labeled with methylamine (MA) and N,N-dimethylethylenediamine (DMEN), respectively, which selectively makes α-2,3-sialylated N-glycans positively charged and realizes online purification, concentration, and discrimination of α-2,3-sialylated N-glycans from other N-glycans in microchip CE-MS. This new approach was demonstrated with standard multisialylated N-glycans, and it was found that only the α-2,3-sialylated N-glycans migrated and were detected in order according to the number of α-2,3-sialic acids. Finally, this strategy was successfully applied in highly sensitive profiling and reproducible quantitation of the serum α-2,3-sialylated N-glycome from ovarian cancer (OC) patients, where 7 of 33 detected α-2,3-sialylated N-glycans significantly changed in the OC group compared with healthy controls.
Collapse
Affiliation(s)
- Mengxia Cheng
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Hong Shu
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ye Peng
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Xiaoxiao Feng
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Guoquan Yan
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Jun Yao
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| | - Huimin Bao
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China
| | - Haojie Lu
- Department of Chemistry and Shanghai Cancer Center, Fudan University, Shanghai 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
19
|
Pongracz T, Verhoeven A, Wuhrer M, de Haan N. The structure and role of lactone intermediates in linkage-specific sialic acid derivatization reactions. Glycoconj J 2021; 38:157-166. [PMID: 33459939 PMCID: PMC8052245 DOI: 10.1007/s10719-020-09971-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 01/12/2023]
Abstract
Sialic acids occur ubiquitously throughout vertebrate glycomes and often endcap glycans in either α2,3- or α2,6-linkage with diverse biological roles. Linkage-specific sialic acid characterization is increasingly performed by mass spectrometry, aided by differential sialic acid derivatization to discriminate between linkage isomers. Typically, during the first step of such derivatization reactions, in the presence of a carboxyl group activator and a catalyst, α2,3-linked sialic acids condense with the subterminal monosaccharides to form lactones, while α2,6-linked sialic acids form amide or ester derivatives. In a second step, the lactones are converted into amide derivatives. Notably, the structure and role of the lactone intermediates in the reported reactions remained ambiguous, leaving it unclear to which extent the amidation of α2,3-linked sialic acids depended on direct aminolysis of the lactone, rather than lactone hydrolysis and subsequent amidation. In this report, we used mass spectrometry to unravel the role of the lactone intermediate in the amidation of α2,3-linked sialic acids by applying controlled reaction conditions on simple and complex glycan standards. The results unambiguously show that in common sialic acid derivatization protocols prior lactone formation is a prerequisite for the efficient, linkage-specific amidation of α2,3-linked sialic acids, which proceeds predominantly via direct aminolysis. Furthermore, nuclear magnetic resonance spectroscopy confirmed that exclusively the C2 lactone intermediate is formed on a sialyllactose standard. These insights allow a more rationalized method development for linkage-specific sialic derivatization in the future.
Collapse
Affiliation(s)
- Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Aswin Verhoeven
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands
| | - Noortje de Haan
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333ZA, Leiden, The Netherlands.
- Copenhagen Center for Glycomics, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
20
|
12-Plex UHPLC-MS/MS analysis of sarcosine in human urine using integrated principle of multiplex tags chemical isotope labeling and selective imprint enriching. Talanta 2021; 224:121788. [PMID: 33379017 DOI: 10.1016/j.talanta.2020.121788] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Urinary sarcosine was considered to be a potential biomarker for prostate cancer (Pca). In this work, an integrated strategy of multiplex tags chemical isotope labeling (MTCIL) combined with magnetic dispersive solid phase extraction (MDSPE), was proposed for specific extraction and high-throughput determination of sarcosine by ultra high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). In the past three months, we have developed 8-plex MTCIL reagents with excellent qualitative and quantitative performance. In this work, the multiplexing capacity of MTCIL reagents (MTCIL360/361/362/363/364/365/366/375/376/378/379/381) was increased 1.5-fold from 8-plex to 12-plex. MTCIL359 was prepared and used to label sarcosine standard as internal standard (IS). The structural analogue derivative (MTCIL373-sarcosine) of all targeted MTCIL-sarcosine derivatives was synthesized and used as a novel dummy template to prepare dummy magnetic molecularly imprinted polymers (DMMIPs). The integration of MTCIL and DMMIPs procedures were extremely favorable to excellent chromatographic separation and efficient mass spectrometric detection. The labeling efficiency, chromatographic retention and mass spectrometry responses of MTCIL reagents were consistent for sarcosine. In a single UHPLC-MS/MS run (2.0 min), this method can simultaneously quantify sarcosine in 12-plex urine samples and achieve unbiased concentrations comparison between different urine samples. Analytical parameters including linearity (R2 0.989-0.997), detection limits (0.02 nM), precision (2.6-11.5%), accuracy (96.1-107.4%), matrix effect, labeling and extraction efficiency were carefully validated. The proposed method was successfully applied for urinary sarcosine determination of healthy male individuals and Pca patients. It was found that the sarcosine concentrations in these two groups were statistically extremely significantly different (P < 0.001). The developed method was a powerful analytical tool to substantially promote the analysis throughput and large-scale experiments about the potential biomarker research.
Collapse
|
21
|
Zhang Y, Fang C, Bao H, Yuan W, Lu H. Discover the
Post‐Translational
Modification Proteome Using Mass Spectrometry. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ying Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University Shanghai 200032 China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| | - Caiyun Fang
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| | - Huimin Bao
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| | - Wenjuan Yuan
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University Shanghai 200032 China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University Shanghai 200032 China
- Department of Chemistry and NHC Key Laboratory of Glycoconjugates Research, Fudan University Shanghai 200032 China
| |
Collapse
|
22
|
Wu Y, Zhang N, Wu H, Sun N, Deng C. Magnetic porous carbon-dependent platform for the determination of N-glycans from urine exosomes. Mikrochim Acta 2021; 188:66. [PMID: 33543311 DOI: 10.1007/s00604-021-04728-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
A magnetic porous carbon-dependent platform is established to separate and determine N-glycans from urine exosomes of healthy people and patients with gastric cancer. The results of the comparison reveal that 6 N-glycans shared by the two groups are downregulated, most of which present core fucose or bisecting N-acetylglucosamine (GlcNAc) type. In addition, five shared N-glycans including two of sialic acid type are upregulated. These obvious differences indicate the close relationship between glycans and gastric cancer thus permitting early diagnosis. A magnetic porous carbon material (FeMPC) from MIL-101(Fe) was employed to separate and analyze N-glycans from urine exosomes of healthy people and patients with gastric cancer.
Collapse
Affiliation(s)
- Yonglei Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Ning Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
23
|
Li Y, Peng Y, Lu H. Advances in Analysis of Linkage Isomers of Sialylated N-Glycans by Mass Spectrometry. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Yuan W, Wang J, Zhang Y, Lu H. Sample preparation approaches for qualitative and quantitative analysis of lipid-derived electrophile modified proteomes by mass spectrometry. Mol Omics 2020; 16:511-520. [PMID: 33079115 DOI: 10.1039/d0mo00099j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipid-derived electrophile (LDE) modifications, which are covalent modifications of proteins by endogenous LDEs, are essential types of protein posttranslational modifications. LDE modifications alter the protein structure and regulate their biological processes in cells. LDE modifications of proteins are also closely associated with several diseases and function as potential biomarkers for clinical diagnosis. The crucial step in studying the LDE modifications is to enrich the LDE modified proteins/peptides from complex biological samples with high efficiency and high selectivity and quantify modified proteins/peptides with high accuracy. In this review, we summarize the recent progress in MS-based proteomic technologies to globally identify and quantify LDE modified proteomes, mainly focusing on discussing the qualitative and quantitative technologies.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China.
| | | | | | | |
Collapse
|
25
|
Furukawa JI, Hanamatsu H, Nishikaze T, Manya H, Miura N, Yagi H, Yokota I, Akasaka-Manya K, Endo T, Kanagawa M, Iwasaki N, Tanaka K. Lactone-Driven Ester-to-Amide Derivatization for Sialic Acid Linkage-Specific Alkylamidation. Anal Chem 2020; 92:14383-14392. [DOI: 10.1021/acs.analchem.0c02209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jun-ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Hokkaido University, Kita15, Nishi7, Kita-ku, Sapporo 060-8638, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| | - Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University,3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Ikuko Yokota
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Keiko Akasaka-Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Motoi Kanagawa
- Department of Cell Biology and Molecular Medicine, Ehime University Graduate School of Medicine, Shitsukawa 454, Toon, Ehime 791-0295, Japan
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kusunoki-cho 7-5-1, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Norimasa Iwasaki
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita21, Nishi11, Kita-ku, Sapporo 001-0021, Japan
| | - Koichi Tanaka
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, 1, Nishinokyo-Kuwabaracho, Nakagyo-ku, Kyoto 604-8511, Japan
| |
Collapse
|
26
|
Hu J, Chen SE, Zhu S, Jia W, Sun J, Zhao XE, Liu H. 13-Plex UHPLC-MS/MS Analysis of Hexanal and Heptanal Using Multiplex Tags Chemical Isotope Labeling Technology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1965-1973. [PMID: 32840365 DOI: 10.1021/jasms.0c00222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, a new series of chemical isotope labeling reagents, levofloxacin-hydrazide-based mass tags (LHMTs) named as LHMT359/360/361/362/363/364/365/366/373/375/376/378/379/381 were first designed and synthesized for the high-throughput analysis of potential biomarkers containing hexanal and heptanal of lung cancer. We exploited a new core structure of levofloxacin-d3, which significantly enhanced the multiplexing capability. Among them, LHMT359 was used for labeling standard compounds as internal standards for quantification. Using LHMT373-heptanal as dummy template, dummy magnetic molecularly imprinted polymers (DMMIPs) were prepared for magnetic dispersive solid-phase extraction after derivatization procedure. Other 12 LHMTs were established for high-throughput labeling hexanal and heptanal in human serum samples. The presynthesized DMMIPs can selectively extract LHMTs-derivatives of hexanal and heptanal from equally mixed derivatization solutions. The enriched derivatives of hexanal and heptanal were quantified by ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). A single UHPLC-MS/MS run enabled simultaneously quantifying hexanal and heptanal from 12 serum samples only within 2 min. The limits of detection were all 0.5 pM for hexanal and heptanal. The accuracies from human serum samples ranged from -10.2% to +11.0% with the intra- and interday precisions less than 11.3%. Meanwhile, this method was successfully applied for the analysis of hexanal and heptanal in serum samples from healthy people and lung cancer patients. The results show that this method has the significant advantages of high sensitivity, accuracy, selectivity, and analysis-throughput. The method application indicates that the developed method is promising in the screening of suspected lung cancer patients.
Collapse
Affiliation(s)
- Jingwen Hu
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Shi-En Chen
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Shuyun Zhu
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Wenhui Jia
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, Qinghai, P. R. China
| | - Xian-En Zhao
- Key Laboratory of Life-organic Analysis of Shandong Province & Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
27
|
Jin W, Li C, Zou M, Lu Y, Wei M, Nan L, Jia Y, Wang C, Huang L, Wang Z. A preliminary study on isomer-specific quantification of sialylated N-glycans released from whey glycoproteins in human colostrum and mature milk using a glycoqueuing strategy. Food Chem 2020; 339:127866. [PMID: 32858386 DOI: 10.1016/j.foodchem.2020.127866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022]
Abstract
Sialylated N-glycans are an integral component of whey proteins in human milk and play an irreplaceable role in infant growth and development. Currently, there are few studies on quantitative comparison of sialylated N-glycans in milk obtained at different lactation stages. Here, a preliminary isomer-specific quantification of whey sialylated N-glycans of human colostrum milk (CM) and mature milk (MM) was performed by using our recently developed glycoqueuing strategy. Such a preliminary comparison revealed that the whey sialylated N-glycan content was 86.4% lower in MM than in CM. Twenty-three α2,6-linked sialylated N-glycan isomers were detected with no α2,3-linked isomer observed. For the first time, three mono-sialylated and four bi-sialylated glycan isomers were reported. With the prolongation of lactation, the relative abundance of mono-sialylated glycans increased, whilst the relative abundance of bi-sialylated glycans decreased significantly. These findings contribute to the understanding of the structure-function relationship of sialylated N-glycans in the human whey fraction.
Collapse
Affiliation(s)
- Wanjun Jin
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Cheng Li
- Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yu Lu
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Ming Wei
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Lijing Nan
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Yue Jia
- College of Life Science, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- College of Life Science, Northwest University, Xi'an 710069, China; Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- College of Life Science, Northwest University, Xi'an 710069, China; Shannxi Natural Carbohydrate Resource Utilization Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
28
|
Chen SE, Zhu S, Hu J, Sun J, Zheng Z, Zhao XE, Liu H. 8-Plex stable isotope labeling absolute quantitation strategy combined with dual-targeted recognizing function material for simultaneous separation and determination of glucosylsphingosine and galactosylsphingosine in human plasma. Anal Chim Acta 2020; 1124:40-51. [DOI: 10.1016/j.aca.2020.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/01/2023]
|
29
|
Sun L, Zhu S, Zheng Z, Sun J, Zhao XE, Liu H. 9-Plex ultra high performance liquid chromatography tandem mass spectrometry determination of free hydroxyl polycyclic aromatic hydrocarbons in human plasma and urine. J Chromatogr A 2020; 1623:461182. [DOI: 10.1016/j.chroma.2020.461182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
|
30
|
Multiplexed derivatization strategy-based dummy molecularly imprinted polymers as sorbents for magnetic dispersive solid phase extraction of globotriaosylsphingosine prior to UHPLC-MS/MS quantitation. Mikrochim Acta 2020; 187:373. [DOI: 10.1007/s00604-020-04341-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022]
|
31
|
Zhu S, Wang X, Zheng Z, Zhao XE, Bai Y, Liu H. Synchronous measuring of triptolide changes in rat brain and blood and its application to a comparative pharmacokinetic study in normal and Alzheimer's disease rats. J Pharm Biomed Anal 2020; 185:113263. [PMID: 32203895 DOI: 10.1016/j.jpba.2020.113263] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Triptolide, a major active ingredient of Tripterygium wilfordii Hook F, provides anti-inflammatory and neuroprotective activities. In this study, a microwave-assisted stable isotope labeling derivatization-magnetic dispersive solid phase extraction (MA-SILD-MDSPE) combined with ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the determination of the triptolide in rat microdialysates. A pair of SILD reagents (d0-/d3-3-N-methyl-2'-carboxyl Rhodamine 6G, d0-/d3-MCR6G) were used to label triptolide in real samples and standards under mild conditions. The introduction of SILD reagents enhanced the sensitivity of MS/MS detection and ensured accurate quantification. A novel molecularly imprinted polymer coating with d0-MCR6G labeled triptolide as template was firstly synthesized by precipitation polymerization method, and used to selectively extract the labeled triptolides from complex matrices. The purified d0-/d3-MCR6G-triptolides were determined by UHPLC-MS/MS analysis. Using the proposed method, a good linearity (R2>0.995), low limits of detection (LOD, 0.45-0.50 pg/mL) and quantification (LOQ, 3.0 pg/mL) were achieved. The intra- and inter-day precision and accuracy were within the acceptable ranges. No significant matrix effect was observed. The derivatization efficiency was more than 96 %. The validated method was successfully applied to a comparative pharmacokinetic study of triptolide synchronously in brain and blood of normal and Alzheimer's disease rats by in vivo microdialysis sampling technique.
Collapse
Affiliation(s)
- Shuyun Zhu
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Xin Wang
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhenjia Zheng
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, Taian, 271018, China
| | - Xian-En Zhao
- Key Laboratory of Pharmaceutical Intermediates and Natural Medicine Analysis, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Glycomics studies using sialic acid derivatization and mass spectrometry. Nat Rev Chem 2020; 4:229-242. [PMID: 37127981 DOI: 10.1038/s41570-020-0174-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Proteins can undergo glycosylation during and/or after translation to afford glycoconjugates, which are often secreted by a cell or populate cell surfaces. Changes in the glycan portion can have a strong influence on a glycoconjugate and are associated with a multitude of human pathologies. Of particular interest are sialylated glycoconjugates, which exist as constitutional isomers that differ in their linkages (α2,3, α2,6, α2,8 or α2,9) between sialic acids and their neighbouring monosaccharides. In general, mass spectrometry enables the rapid and sensitive characterization of glycosylation, but there are challenges specific to identifying and (relatively) quantifying sialic acid isomers. These challenges can be addressed using linkage-specific methodologies for sialic acid derivatization, after which mass spectrometry can enable product identification. This Review is concerned with the new and important derivatization approaches reported in the past decade, which have been implemented in various mass-spectrometry-glycomics workflows and have found clinical glycomics applications. The convenience and wide applicability of the approaches make them attractive for studies of sialylation in different types of glycoconjugate.
Collapse
|