1
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
2
|
Sun Y, Zhang B, Zhang C, Lu H, Yang Y, Han B, Dong F, Lv J, Zhang S, Li Z, Lei Z, Ma H. Simple Way to Fabricate Emissive Boron-Containing Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4569-4579. [PMID: 36642890 DOI: 10.1021/acsami.2c20580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Highly fluorescent covalent organic frameworks (COFs) are rarely obtained because of the π-π stacked layers with aggregation-caused quenching behavior. Unarguably, highly fluorescent COFs with tunable emission colors are even more rarely achieved. Herein, a general strategy to modify the classical COF material (named COF-1) by different fluorescent molecules via N → B interaction was developed. In this method, the boron-containing COF-1 acted as a porous and crystalline matrix as well as a reaction partner of Lewis acid; after interacting with fluorescent molecules with the anchoring group of pyridine (Lewis base), COF-1 takes a gorgeous transfiguration from a non-emissive powder into a highly fluorescent COF material with tunable emission colors. This disclosed method endowed the typical COFs with new emissive life and is speculated with the general research concept for all boron-containing COFs. Benefiting from the prominent fluorescent emission in the aggregation state, sensitive probes toward amines are achieved.
Collapse
Affiliation(s)
- Yuqing Sun
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bo Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Caili Zhang
- Rizhao Customs, Rizhao, Shandong 276826, P. R. China
| | - Huiming Lu
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Shengjun Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco- Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
3
|
Deshmukh S, Biradar MR, Kharat K, Bhosale SV. Aggregation induced emission (AIE) materials for mitochondria imaging. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 184:179-204. [PMID: 34749973 DOI: 10.1016/bs.pmbts.2021.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondria are energy producing organelle of the eukaryotic cells. The main activities of mitochondria monitored by various marker molecules are autophagy detection, estimation of Reactive Oxygen Species (ROS), mitochondrial death and Photodynamic therapy in cancer cells. Due to the advantages of specificity and sensitivity, aggregation induced emission (AIE) is now popular for the mitochondria labeling. In this chapter, we would like to discuss three major types of AIEgens probe used in mitochondrial staining. There are three different types of AIEgens available for mitochondrial detection and sensing based on their different structural motifs. The first type of AIEgens is tetraphenylethene (TPE) based molecules. Due to simple engineering architecture, TPE based AIEgens are widely employed in bioimaging applications. AIEgen such as triphenylphosphine (TPP), and triphenylamine (TPA) are also employed as a novel building block. These are successfully used as exceptional lipid droplet (LD)-specific bio probes in cell imaging, assurance of cell combination, and photodynamic cancer cell removal. The third group is the miscellaneous AIEgens probe involved in mitochondria imaging.
Collapse
Affiliation(s)
- Satish Deshmukh
- Department of Chemistry, MSPMs' Deogiri College, Aurangabad, India
| | - Madan R Biradar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | | | - Sidhanath Vishwanath Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
4
|
Xu C, Xu W, Yang Z, Li S, Wang Y, Hua J. A turn-on mitochondria-targeted near-infrared fluorescent probe with a large Stokes shift for detecting and imaging endogenous superoxide anion in cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Jiao S, Zhai J, Yang S, Meng X. A highly responsive, sensitive NIR fluorescent probe for imaging of superoxide anion in mitochondria of oral cancer cells. Talanta 2020; 222:121566. [PMID: 33167262 DOI: 10.1016/j.talanta.2020.121566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
Superoxide anion (O2•-) is an important biomarker for reactive oxygen species (ROS) generated through physiological and pathological processes. However, due to the short half-life of O2•- and high autofluorescence of cell tissues, in situ real-time tracking and monitoring of endogenous O2•- can be difficult. In this paper, a fluorescent probe IFP-O2 was developed to detect endogenous O2•- in cells. The probe could instantaneously react with O2•- to produce fluorescence off-on effect; its detection limit was as low as 10 nM. Cell experiments also showed that the probe had low toxicity and mitochondrial targeting ability. The article presents, for the first time, a probe that can be employed to measure endogenous O2•- in oral cancer Cal-27 cells and is a promising tool for monitoring and evaluating apoptosis.
Collapse
Affiliation(s)
- Shan Jiao
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130021, China
| | - Jingjie Zhai
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130021, China
| | - Si Yang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Xinmin Street 71, Changchun, 130021, China
| | - Xiuping Meng
- Hospital of Stomatology, Jilin University, Qinghua Road 1500, Changchun, 130021, China.
| |
Collapse
|