1
|
Narayanan B, Xia C, McAndrew R, Shen AL, Kim JJP. Structural basis for expanded substrate specificities of human long chain acyl-CoA dehydrogenase and related acyl-CoA dehydrogenases. Sci Rep 2024; 14:12976. [PMID: 38839792 PMCID: PMC11153573 DOI: 10.1038/s41598-024-63027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the catalytically inactive Glu291Gln mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial β-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43 kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5β-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.
Collapse
Affiliation(s)
- Beena Narayanan
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Chuanwu Xia
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of North Florida, Jacksonville, FL, 32224, USA
| | - Ryan McAndrew
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94740, USA
| | - Anna L Shen
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Jung-Ja P Kim
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
2
|
Narayanan B, Xia C, McAndrew R, Shen AL, Kim JJP. Structural Basis for Expanded Substrate Speci ficities of Human Long Chain Acyl-CoA Dehydrogenase and Related Acyl- CoA Dehydrogenases. RESEARCH SQUARE 2024:rs.3.rs-3980524. [PMID: 38464032 PMCID: PMC10925408 DOI: 10.21203/rs.3.rs-3980524/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Crystal structures of human long-chain acyl-CoA dehydrogenase (LCAD) and the E291Q mutant, have been determined. These structures suggest that LCAD harbors functions beyond its historically defined role in mitochondrial β-oxidation of long and medium-chain fatty acids. LCAD is a homotetramer containing one FAD per 43kDa subunit with Glu291 as the catalytic base. The substrate binding cavity of LCAD reveals key differences which makes it specific for longer and branched chain substrates. The presence of Pro132 near the start of the E helix leads to helix unwinding that, together with adjacent smaller residues, permits binding of bulky substrates such as 3α, 7α, l2α-trihydroxy-5β-cholestan-26-oyl-CoA. This structural element is also utilized by ACAD11, a eucaryotic ACAD of unknown function, as well as bacterial ACADs known to metabolize sterol substrates. Sequence comparison suggests that ACAD10, another ACAD of unknown function, may also share this substrate specificity. These results suggest that LCAD, ACAD10, ACAD11 constitute a distinct class of eucaryotic acyl CoA dehydrogenases.
Collapse
|
3
|
Jin Y, Peng J, Tian W, Chang Z. A Keto Reductase Involved in Steroid Degradation in Mycolicibacterium neoaurum. Chem Biodivers 2023; 20:e202200800. [PMID: 36564340 DOI: 10.1002/cbdv.202200800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
Phytosterols can be used by microorganisms as carbon and energy sources and completely degraded into CO2 and H2 O. The catabolic pathway of phytosterols was well characterized in many microorganisms. Blocking the steroid core ring degradation by deletions of fadE30 and fadD3 genes, two important steroid intermediates, 3aα-H-4α-(3'-Propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (sitolactone, or HIL) and 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) can be accumulated. They are currently used to synthesize nor-steroid drugs with an α-methyl group or without the methyl group at the C10 -position, such as estrone and norethindrone. In this study, a key gene involved in the bioconversion of HIP to HIL was identified in Mycolicibacterium neoaurum. Through heterologous expression, gene hipR was found to be involved in the reduction of the C5 keto group of HIP to a hydroxy group, leading to spontaneously lactonization into HIL in vitro. Through gene complementation and knockout, HipR functions were verified and two HIP degradation pathways in vivo were elucidated. The finding of this research facilitated the understanding of the metabolic pathway of sterols, and was directly applied to engineering robust production strains by overexpression or knockout of related genes.
Collapse
Affiliation(s)
- Ying Jin
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
- Shenyang Botai Pharmaceutical Ltd., 7 Xihe Shibei Street, Tiexi District, Shenyang, 110000, P. R. China
| | - Jinjin Peng
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Wei Tian
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
| | - Zunxue Chang
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, P. R. China
- Shenyang Botai Pharmaceutical Ltd., 7 Xihe Shibei Street, Tiexi District, Shenyang, 110000, P. R. China
| |
Collapse
|
4
|
Lobastova T, Fokina V, Pozdnyakova-Filatova I, Tarlachkov S, Shutov A, Donova M. Insight into Different Stages of Steroid Degradation in Thermophilic Saccharopolyspora hirsuta VKM Ac-666 T Strain. Int J Mol Sci 2022; 23:ijms232416174. [PMID: 36555813 PMCID: PMC9782250 DOI: 10.3390/ijms232416174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Steroids are abundant molecules in nature, and various microorganisms evolved to utilize steroids. Thermophilic actinobacteria play an important role in such processes. However, very few thermophiles have so far been reported capable of degrading or modifying natural sterols. Recently, genes putatively involved in the sterol catabolic pathway have been revealed in the moderately thermophilic actinobacterium Saccharopolyspora hirsuta VKM Ac-666T, but peculiarities of strain activity toward sterols are still poorly understood. S. hirsuta catalyzed cholesterol bioconversion at a rate significantly inferior to that observed for mesophilic actinobacteria (mycobacteria and rhodococci). Several genes related to different stages of steroid catabolism increased their expression in response to cholesterol as was shown by transcriptomic studies and verified by RT-qPCR. Sequential activation of genes related to the initial step of cholesterol side chain oxidation (cyp125) and later steps of steroid core degradation (kstD3, kshA, ipdF, and fadE30) was demonstrated for the first time. The activation correlates with a low cholesterol conversion rate and intermediate accumulation by the strain. The transcriptomic analyses revealed that the genes involved in sterol catabolism are linked functionally, but not transcriptionally. The results contribute to the knowledge on steroid catabolism in thermophilic actinobacteria and could be used at the engineering of microbial catalysts.
Collapse
Affiliation(s)
- Tatyana Lobastova
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Victoria Fokina
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Irina Pozdnyakova-Filatova
- Laboratory of Molecular Microbiology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Sergey Tarlachkov
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Andrey Shutov
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Marina Donova
- Laboratory of Bioengineering of Microbial Producers, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
- Correspondence:
| |
Collapse
|
5
|
Steroid Metabolism in Thermophilic Actinobacterium Saccharopolyspora hirsuta VKM Ac-666 T. Microorganisms 2021; 9:microorganisms9122554. [PMID: 34946155 PMCID: PMC8708139 DOI: 10.3390/microorganisms9122554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
The application of thermophilic microorganisms opens new prospects in steroid biotechnology, but little is known to date on steroid catabolism by thermophilic strains. The thermophilic strain Saccharopolyspora hirsuta VKM Ac-666T has been shown to convert various steroids and to fully degrade cholesterol. Cholest-4-en-3-one, cholesta-1,4-dien-3-one, 26-hydroxycholest-4-en-3-one, 3-oxo-cholest-4-en-26-oic acid, 3-oxo-cholesta-1,4-dien-26-oic acid, 26-hydroxycholesterol, 3β-hydroxy-cholest-5-en-26-oic acid were identified as intermediates in cholesterol oxidation. The structures were confirmed by 1H and 13C-NMR analyses. Aliphatic side chain hydroxylation at C26 and the A-ring modification at C3, which are putatively catalyzed by cytochrome P450 monooxygenase CYP125 and cholesterol oxidase, respectively, occur simultaneously in the strain and are followed by cascade reactions of aliphatic sidechain degradation and steroid core destruction via the known 9(10)-seco-pathway. The genes putatively related to the sterol and bile acid degradation pathways form three major clusters in the S. hirsuta genome. The sets of the genes include the orthologs of those involved in steroid catabolism in Mycobacterium tuberculosis H37Rv and Rhodococcus jostii RHA1 and related actinobacteria. Bioinformatics analysis of 52 publicly available genomes of thermophilic bacteria revealed only seven candidate strains that possess the key genes related to the 9(10)-seco pathway of steroid degradation, thus demonstrating that the ability to degrade steroids is not widespread among thermophilic bacteria.
Collapse
|
6
|
Mycolicibacterium cell factory for the production of steroid-based drug intermediates. Biotechnol Adv 2021; 53:107860. [PMID: 34710554 DOI: 10.1016/j.biotechadv.2021.107860] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022]
Abstract
Steroid-based drugs have been developed as the second largest medical category in pharmaceutics. The well-established route of steroid industry includes two steps: the conversion of natural products with a steroid framework to steroid-based drug intermediates and the synthesis of varied steroid-based drugs from steroid-based drug intermediates. The biosynthesis of steroid-based drug intermediates from phytosterols by Mycolicibacterium cell factories bypasses the potential undersupply of diosgenin in the traditional steroid chemical industry. Moreover, the biosynthesis route shows advantages on multiple steroid-based drug intermediate products, more ecofriendly processes, and consecutive reactions carried out in one operation step and in one pot. Androsta-4-ene-3,17-dione (AD), androsta-1,4-diene-3,17-dione (ADD) and 9-hydroxyandrostra-4-ene-3,17-dione (9-OH-AD) are the representative steroid-based drug intermediates synthesized by mycolicibacteria. Other steroid metabolites of mycolicibacteria, like 4-androstene-17β-ol-3-one (TS), 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC), 22-hydroxy-23,24-bisnorchol-1,4-diene-3-one (1,4-HBC), 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HBC), 3aα-H-4α-(3'-propionic acid)-7aβ-methylhexahydro-1,5-indanedione (HIP) and 3aα-H-4α-(3'-propionic acid)-5α-hydroxy-7aβ-methylhexahydro-1-indanone-δ-lactone (HIL), also show values as steroid-based drug intermediates. To improve the bio-production efficiency of the steroid-based drug intermediates, mycolicibacterial strains and biotransformation processes have been continuously studied in the past decades. Many mycolicibacteria that accumulate steroid drug intermediates have been isolated, and subsequently optimized by conventional mutagenesis and genetic engineering. Especially, with the clarification of the mycolicibacterial steroid metabolic pathway and the developments on gene editing technologies, rational design is becoming an important measure for the construction and optimization of engineered mycolicibacteria strains that produce steroid-based drug intermediates. Hence, by reviewing researches in the past two decades, this article updates the overall process of steroid metabolism in mycolicibacteria and provides comprehensive schemes for the rational construction of mycolicibacterial strains that accumulate steroid-based drug intermediates. In addition, the special strategies for the bioconversion of highly hydrophobic steroid in aqueous media are discussed as well.
Collapse
|
7
|
Comparative Analysis of Bile-Salt Degradation in Sphingobium sp. Strain Chol11 and Pseudomonas stutzeri Strain Chol1 Reveals Functional Diversity of Proteobacterial Steroid Degradation Enzymes and Suggests a Novel Pathway for Side Chain Degradation. Appl Environ Microbiol 2021; 87:e0145321. [PMID: 34469190 DOI: 10.1128/aem.01453-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The reaction sequence for aerobic degradation of bile salts by environmental bacteria resembles degradation of other steroid compounds. Recent findings show that bacteria belonging to the Sphingomonadaceae use a pathway variant for bile-salt degradation. This study addresses this so-called Δ4,6-variant by comparative analysis of unknown degradation steps in Sphingobium sp. strain Chol11 with known reactions found in Pseudomonas stutzeri Chol1. Investigations of strain Chol11 revealed an essential function of the acyl-CoA dehydrogenase (ACAD) Scd4AB for growth with bile salts. Growth of the scd4AB deletion mutant was restored with a metabolite containing a double bond within the side chain which was produced by the Δ22-ACAD Scd1AB from P. stutzeri Chol1. Expression of scd1AB in the scd4AB deletion mutant fully restored growth with bile salts, while expression of scd4AB only enabled constricted growth in P. stutzeri Chol1 scd1A or scd1B deletion mutants. Strain Chol11 Δscd4A accumulated hydroxylated steroid metabolites which were degraded and activated with coenzyme A by the wild type. Activities of five Rieske type monooxygenases of strain Chol11 were screened by heterologous expression and compared to the B-ring cleaving KshABChol1 from P. stutzeri Chol1. Three of the Chol11 enzymes catalyzed B-ring cleavage of only Δ4,6-steroids, while KshABChol1 was more versatile. Expression of a fourth KshA homolog, Nov2c228, led to production of metabolites with hydroxylations at an unknown position. These results indicate functional diversity of proteobacterial enzymes for bile-salt degradation and suggest a novel side chain degradation pathway involving an essential ACAD reaction and a steroid hydroxylation step. IMPORTANCE This study highlights the biochemical diversity of bacterial degradation of steroid compounds in different aspects. First, it further elucidates an unexplored variant in the degradation of bile-salt side chains by sphingomonads, a group of environmental bacteria that is well-known for their broad metabolic capabilities. Moreover, it adds a so far unknown hydroxylation of steroids to the reactions Rieske monooxygenases can catalyze with steroids. Additionally, it analyzes a proteobacterial ketosteroid-9α-hydroxylase and shows that this enzyme is able to catalyze side reactions with nonnative substrates.
Collapse
|
8
|
Feller FM, Holert J, Yücel O, Philipp B. Degradation of Bile Acids by Soil and Water Bacteria. Microorganisms 2021; 9:1759. [PMID: 34442838 PMCID: PMC8399759 DOI: 10.3390/microorganisms9081759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Bile acids are surface-active steroid compounds with a C5 carboxylic side chain at the steroid nucleus. They are produced by vertebrates, mainly functioning as emulsifiers for lipophilic nutrients, as signaling compounds, and as an antimicrobial barrier in the duodenum. Upon excretion into soil and water, bile acids serve as carbon- and energy-rich growth substrates for diverse heterotrophic bacteria. Metabolic pathways for the degradation of bile acids are predominantly studied in individual strains of the genera Pseudomonas, Comamonas, Sphingobium, Azoarcus, and Rhodococcus. Bile acid degradation is initiated by oxidative reactions of the steroid skeleton at ring A and degradation of the carboxylic side chain before the steroid nucleus is broken down into central metabolic intermediates for biomass and energy production. This review summarizes the current biochemical and genetic knowledge on aerobic and anaerobic degradation of bile acids by soil and water bacteria. In addition, ecological and applied aspects are addressed, including resistance mechanisms against the toxic effects of bile acids.
Collapse
Affiliation(s)
- Franziska Maria Feller
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Johannes Holert
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Onur Yücel
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
| | - Bodo Philipp
- Institute for Molecular Microbiology and Biotechnology, University of Münster, Corrensstr. 3, 48149 Münster, Germany; (F.M.F.); (J.H.); (O.Y.)
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Auf dem Aberg 1, 57392 Schmallenberg, Germany
| |
Collapse
|
9
|
Yuan T, Werman JM, Yin X, Yang M, Garcia-Diaz M, Sampson NS. Enzymatic β-Oxidation of the Cholesterol Side Chain in Mycobacterium tuberculosis Bifurcates Stereospecifically at Hydration of 3-Oxo-cholest-4,22-dien-24-oyl-CoA. ACS Infect Dis 2021; 7:1739-1751. [PMID: 33826843 PMCID: PMC8204306 DOI: 10.1021/acsinfecdis.1c00069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
The unique ability
of Mycobacterium tuberculosis (Mtb) to utilize host
lipids such as cholesterol for survival, persistence,
and virulence has made the metabolic pathway of cholesterol an area
of great interest for therapeutics development. Herein, we identify
and characterize two genes from the Cho-region (genomic locus responsible
for cholesterol catabolism) of the Mtb genome, chsH3 (Rv3538) and chsB1 (Rv3502c). Their protein products
catalyze two sequential stereospecific hydration and dehydrogenation
steps in the β-oxidation of the cholesterol side chain. ChsH3
favors the 22S hydration of 3-oxo-cholest-4,22-dien-24-oyl-CoA
in contrast to the previously reported EchA19 (Rv3516), which catalyzes
formation of the (22R)-hydroxy-3-oxo-cholest-4-en-24-oyl-CoA
from the same enoyl-CoA substrate. ChsB1 is stereospecific and catalyzes
dehydrogenation of the ChsH3 product but not the EchA19 product. The
X-ray crystallographic structure of the ChsB1 apo-protein was determined
at a resolution of 2.03 Å, and the holo-enzyme with bound NAD+ cofactor was determined at a resolution of 2.21 Å. The
homodimeric structure is representative of a classical NAD+-utilizing short-chain type alcohol dehydrogenase/reductase, including
a Rossmann-fold motif, but exhibits a unique substrate binding site
architecture that is of greater length and width than its homologous
counterparts, likely to accommodate the bulky steroid substrate. Intriguingly,
Mtb utilizes hydratases from the MaoC-like family in sterol side-chain
catabolism in contrast to fatty acid β-oxidation in other species
that utilize the evolutionarily distinct crotonase family of hydratases.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Xingyu Yin
- Biochemistry and Structural Biology Graduate Program, Stony Brook University, Stony Brook, New York 11794-5215, United States
| | - Meng Yang
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
10
|
Stirling AJ, Gilbert SE, Conner M, Mallette E, Kimber MS, Seah SYK. A Key Glycine in Bacterial Steroid-Degrading Acyl-CoA Dehydrogenases Allows Flavin-Ring Repositioning and Modulates Substrate Side Chain Specificity. Biochemistry 2020; 59:4081-4092. [PMID: 33040522 DOI: 10.1021/acs.biochem.0c00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A wide variety of steroid metabolites synthesized by eukaryotes are all ultimately catabolized by bacteria; while generally saprophytic, pathogenic Mycobacteria have repurposed these pathways to utilize host intracellular cholesterol pools. Steroid degradation is complex, but a recurring theme is that cycles of β-oxidation are used to iteratively remove acetyl- or propanoyl-CoA groups. These β-oxidation cycles are initiated by the FAD-dependent oxidation of acyl groups, catalyzed by acyl-CoA dehydrogenases (ACADs). We show here that the tcur3481 and tcur3483 genes of Thermomonospora curvata encode subunits of a single ACAD that degrades steroid side chains with a preference for three-carbon over five-carbon substituents. The structure confirms that this enzyme is heterotetrameric, with active sites only in the Tcur3483 subunits. In comparison with the steroid ACAD FadE26-FadE27 from Mycobacterium tuberculosis, the active site is narrower and closed at the steroid-binding end, suggesting that Tcur3481-Tcur3483 is in a catalytically productive state, while FadE26-FadE27 is opened up to allow substrate entry. The flavin rings in Tcur3481-Tcur3483 sit in an unusual pocket created by Gly363, a residue conserved as Ala in steroid ACADs narrowly specific for five-carbon side chains, including FadE34. A Gly363Ala variant of Tcur3481-Tcur3483 prefers five-carbon side chains, while an inverse Ala691Gly FadE34 variant enables three-carbon side chain steroid oxidation. We determined the structure of the Tcur3483 Gly363Ala variant, showing that the flavin rings shift into the more conventional position. Modeling suggests that the shifted flavin position made possible by Gly363 is required to allow the bulky, inflexible three-carbon steroid to bind productively in the active site.
Collapse
Affiliation(s)
- Alexander J Stirling
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Stephanie E Gilbert
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Megan Conner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Evan Mallette
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 5E9
| |
Collapse
|