1
|
Imam IA, Al Adawi S, Liu X, Ellingson S, Brainson CF, Moseley HNB, Zinner R, Zhang S, Shao Q. L858R/L718Q and L858R/L792H Mutations of EGFR Inducing Resistance Against Osimertinib by Forming Additional Hydrogen Bonds. Proteins 2024. [PMID: 39494831 DOI: 10.1002/prot.26761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Acquired resistance to first-line treatments in various cancers both promotes cancer recurrence as well as limits effective treatment. This is true for epidermal growth factor receptor (EGFR) mutations, for which secondary EGFR mutations are one of the principal mechanisms conferring resistance to the covalent inhibitor osimertinib. Thus, it is very important to develop a deeper understanding of the secondary mutational resistance mechanisms associated with EGFR mutations arising in tumors treated with osimertinib to expedite the development of innovative therapeutic drugs to overcome acquired resistance. This work uses all-atom molecular dynamics (MD) simulations to investigate the conformational variation of two reported EGFR mutants (L858R/L718Q and L858R/L792H) that resist osimertinib. The wild-type EGFR kinase domain and the L858R mutant are used as the reference. Our MD simulation results revealed that both the L718Q and L792H secondary mutations induce additional hydrogen bonds between the residues in the active pocket and the residues with the water molecules. These additional hydrogen bonds reduce the exposure area of C797, the covalent binding target of osimertinib. The additional hydrogen bonds also influence the binding affinity of the EGFR kinase domain by altering the secondary structure and flexibility of the amino acid residues in the domain. Our work highlights how the two reported mutations may alter both residue-residue and residue-solvent hydrogen bonds, affecting protein binding properties, which could be helpful for future drug discovery.
Collapse
Affiliation(s)
- Ibrahim A Imam
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Shatha Al Adawi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Sally Ellingson
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- College of Medicine, Division of Biomedical Informatics University of Kentucky, Lexington, Kentucky, USA
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Ralph Zinner
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA
| | - Shulin Zhang
- College of Medicine, Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Mader LK, Borean JE, Keillor JW. A practical guide for the assay-dependent characterisation of irreversible inhibitors. RSC Med Chem 2024:d4md00707g. [PMID: 39526224 PMCID: PMC11544421 DOI: 10.1039/d4md00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Irreversible targeted covalent inhibitors, in the past regarded as inappropriately reactive and toxic, have seen a recent resurgence in clinical interest. This paradigm shift is attributed to the exploitation of the two-step mechanism, in which a high affinity and selectivity (i.e., low K I) scaffold binds the target and only then does a pendant low intrinsic reactivity warhead react with the target (moderate k inact). This highlights the importance of evaluating inhibitors by deriving both their K I and k inact values. The development of methods to evaluate these inhibitors by accounting for their time-dependent nature has been crucial to the discovery of promising clinical candidates. Herein, we report all the practical kinetic methods available to date to derive k inact and K I values. These methods include direct observation of covalent modification, continuous assay (Kitz & Wilson) evaluation, and discontinuous incubation and pre-incubation time-dependent IC50 assays. We also provide practical guidelines and examples for performing these assays, comparison of their utility, and perspectives for their extended applications. This review aims to provide clarity about the use of these methods for reporting complete inhibitor kinetic profiles, guiding irreversible drug development towards increased target affinity and selectivity, while modulating in vivo stability and on-target reactivity.
Collapse
Affiliation(s)
- Lavleen K Mader
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Jessica E Borean
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
3
|
Bon C, Goretzki B, Flamme M, Shelton C, Davis H, Lima F, Garcia F, Brittain S, Brocklehurst CE. Oxadiazolines as Photoreleasable Labels for Drug Target Identification. J Am Chem Soc 2024; 146:26759-26765. [PMID: 39288302 DOI: 10.1021/jacs.4c06936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photoaffinity labeling is a widely used technique for studying ligand-protein and protein-protein interactions. Traditional photoaffinity labels utilize nonspecific C-H bond insertion reactions mediated by a highly reactive intermediate. Despite being the most widely used photoaffinity labels, diazirines exhibit limited compatibility with downstream organic reactions and suffer from storage stability concerns. This study introduces oxadiazolines as innovative and complementary photoactivatable labels for addition to the toolbox and demonstrates their application in vitro and through in cellulo labeling experiments. Oxadiazolines can be easily synthesized from ketone moieties and cleaved with 302-330 nm light to cleanly liberate a diazo reactive moiety that can covalently modify nucleophilic amino acid residues. Notably, oxadiazolines are compatible with various organic reaction conditions and functional groups, allowing for the exploration of a large chemical space. Several known inhibitors featuring the oxadiazoline functionality were prepared without affecting their binding affinity. Furthermore, we confirmed the ability of oxadiazolines to form covalent bonds with proteins upon UV-irradiation, both in vitro and in cellulo, yielding comparable results to those of the matched diazirine compounds.
Collapse
Affiliation(s)
- Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Benedikt Goretzki
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Marie Flamme
- Chemical and Analytical Development, Novartis Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Claude Shelton
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Francisco Garcia
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Scott Brittain
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| |
Collapse
|
4
|
Thomson C, Braybrooke E, Colclough N, Davies NL, Floc'h N, Greenwood R, Guérot C, Hargreaves D, Johnstrom P, Khurana P, Kostomiris DH, Li S, Lister A, Lorthioir O, Martin S, McCoull W, McLean NJ, McWilliams L, Orme JP, Packer MJ, Pearson S, Swaih AM, Tentarelli S, Tucker MJ, Ward RA, Wilkinson S, Winlow P, Wood IL. Optimization of Potent, Efficacious, Selective and Blood-Brain Barrier Penetrating Inhibitors Targeting EGFR Exon20 Insertion Mutations. J Med Chem 2024. [PMID: 39340451 DOI: 10.1021/acs.jmedchem.4c01792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Herein, we report the optimization of a series of epidermal growth factor receptor (EGFR) Exon20 insertion (Ex20Ins) inhibitors using structure-based drug design (SBDD), leading to the discovery of compound 28, a potent and wild type selective molecule, which demonstrates efficacy in multiple EGFR Ex20Ins xenograft models and blood-brain barrier penetration in preclinical species. Building on our earlier discovery of an in vivo probe, SBDD was used to design a novel bicyclic core with a lower molecular weight to facilitate blood-brain barrier penetration. Further optimization including strategic linker replacement and diversification of the ring system interacting with the c-helix enabled photolytic and metabolic stability improvements. Together with refinement of molecular properties important for achieving high brain exposure, including molecular weight, H-bonding, and polarity, 28 was identified.
Collapse
Affiliation(s)
- Clare Thomson
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Erin Braybrooke
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicola Colclough
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nichola L Davies
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicolas Floc'h
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Ryan Greenwood
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Carine Guérot
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - David Hargreaves
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Peter Johnstrom
- AstraZeneca Translational Centre, Personal Healthcare and Biomarkers, AstraZeneca R&D, Karolinska Institutet, Department of Clinical Neuroscience, Karolinska University Hospital, R5:U1, Stockholm SE-171 76, Sweden
| | - Puneet Khurana
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Demetrios H Kostomiris
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Songlei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andrew Lister
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Olivier Lorthioir
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Scott Martin
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - William McCoull
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Neville J McLean
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Lisa McWilliams
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Jonathan P Orme
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Martin J Packer
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Stuart Pearson
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Aisha M Swaih
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Sharon Tentarelli
- Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Michael J Tucker
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Richard A Ward
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Stephen Wilkinson
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Poppy Winlow
- Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Isabel L Wood
- Oncology R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| |
Collapse
|
5
|
Heppner DE, Ogboo BC, Urul DA, May EW, Schaefer EM, Murkin AS, Gehringer M. Demystifying Functional Parameters for Irreversible Enzyme Inhibitors. J Med Chem 2024; 67:14693-14696. [PMID: 39115869 DOI: 10.1021/acs.jmedchem.4c01721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- David E Heppner
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Blessing C Ogboo
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Daniel A Urul
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Erik M Schaefer
- AssayQuant Technologies Inc., Marlboro, Massachusetts 01752, United States
| | - Andrew S Murkin
- Department of Chemistry, The State University of New York at Buffalo. Buffalo, New York 14221, United States
| | - Matthias Gehringer
- Division of Medicinal Chemistry, Institute of Biomedical Engineering, University Hospital Tübingen and Institute of Pharmaceutical Sciences, University of Tübingen. 72076 Tübingen, Germany
| |
Collapse
|
6
|
Zhang J, Lim SM, Yu MR, Chen C, Wang J, Wang W, Rui H, Lu J, Lu S, Mok T, Chen ZJ, Cho BC. D3S-001, a KRAS G12C Inhibitor with Rapid Target Engagement Kinetics, Overcomes Nucleotide Cycling, and Demonstrates Robust Preclinical and Clinical Activities. Cancer Discov 2024; 14:1675-1698. [PMID: 38717075 PMCID: PMC11372373 DOI: 10.1158/2159-8290.cd-24-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 09/05/2024]
Abstract
First-generation KRAS G12C inhibitors, such as sotorasib and adagrasib, are limited by the depth and duration of clinical responses. One potential explanation for their modest clinical activity is the dynamic "cycling" of KRAS between its guanosine diphosphate (GDP)- and guanosine triphosphate (GTP)-bound states, raising controversy about whether targeting the GDP-bound form can fully block this oncogenic driver. We herein report that D3S-001, a next-generation GDP-bound G12C inhibitor with faster target engagement (TE) kinetics, depletes cellular active KRAS G12C at nanomolar concentrations. In the presence of growth factors, such as epithelial growth factor and hepatocyte growth factor, the ability of sotorasib and adagrasib to inhibit KRAS was compromised whereas the TE kinetics of D3S-001 was nearly unaffected, a unique feature differentiating D3S-001 from other GDP-bound G12C inhibitors. Furthermore, the high covalent potency and cellular TE efficiency of D3S-001 contributed to robust antitumor activity preclinically and translated into promising clinical efficacy in an ongoing phase 1 trial (NCT05410145). Significance: The kinetic study presented in this work unveils, for the first time, that a GDP-bound conformation-selective KRAS G12C inhibitor can potentially deplete cellular active KRAS in the presence of growth factors and offers new insights into the critical features that drive preclinical and clinical efficacy for this class of drugs.
Collapse
Affiliation(s)
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Ra Yu
- Yonsei New II Han Institute for Integrative Lung Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | - Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tony Mok
- State Key Laboratory of Translational Oncology, Department of Clinical Oncology, Chinese University of Hong Kong, China
| | | | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Thomson C, Barton P, Braybrooke E, Colclough N, Dong Z, Evans L, Floc'h N, Guérot C, Hargreaves D, Khurana P, Li S, Li X, Lister A, McCoull W, McWilliams L, Orme JP, Packer MJ, Swaih AM, Ward RA, Winlow P, Ye Y. Discovery and Optimization of Potent, Efficacious and Selective Inhibitors Targeting EGFR Exon20 Insertion Mutations. J Med Chem 2024; 67:8988-9027. [PMID: 38770784 DOI: 10.1021/acs.jmedchem.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Herein, we report the identification and optimization of a series of potent inhibitors of EGFR Exon20 insertions with significant selectivity over wild-type EGFR. A strategically designed HTS campaign, multiple iterations of structure-based drug design (SBDD), and tactical linker replacement led to a potent and wild-type selective series of molecules and ultimately the discovery of 36. Compound 36 is a potent and selective inhibitor of EGFR Exon20 insertions and has demonstrated encouraging efficacy in NSCLC EGFR CRISPR-engineered H2073 xenografts that carry an SVD Exon20 insertion and reduced efficacy in a H2073 wild-type EGFR xenograft model compared to CLN-081 (5), indicating that 36 may have lower EGFR wild-type associated toxicity.
Collapse
Affiliation(s)
- Clare Thomson
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Peter Barton
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Erin Braybrooke
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicola Colclough
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Zhiqiang Dong
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Laura Evans
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Nicolas Floc'h
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Carine Guérot
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - David Hargreaves
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Puneet Khurana
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Songlei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Xiuwei Li
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andrew Lister
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - William McCoull
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Lisa McWilliams
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Jonathan P Orme
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Martin J Packer
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Aisha M Swaih
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Richard A Ward
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Poppy Winlow
- AstraZeneca, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0AA, United Kingdom
| | - Yang Ye
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| |
Collapse
|
8
|
Liang F, Zhang Y, Xue Q, Zhang X. Integrated PBPK-EO modeling of osimertinib to predict plasma concentrations and intracranial EGFR engagement in patients with brain metastases. Sci Rep 2024; 14:12736. [PMID: 38830973 PMCID: PMC11148161 DOI: 10.1038/s41598-024-63743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
The purpose of this study was to develop and validate a physiologically based pharmacokinetic (PBPK) model combined with an EGFR occupancy (EO) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and the intracranial time-course of EGFR (T790M and L858R mutants) engagement in patient populations. The PBPK model was also used to investigate the key factors affecting OSI pharmacokinetics (PK) and intracranial EGFR engagement, analyze resistance to the target mutation C797S, and determine optimal dosing regimens when used alone and in drug-drug interactions (DDIs). A population PBPK-EO model of OSI was developed using physicochemical, biochemical, binding kinetic, and physiological properties, and then validated using nine clinical PK studies, observed EO study, and two clinical DDI studies. The PBPK-EO model demonstrated good consistency with observed data, with most prediction-to-observation ratios falling within the range of 0.7 to 1.3 for plasma AUC, Cmax, Ctrough and intracranial free concentration. The simulated time-course of C797S occupancy by the PBPK model was much lower than T790M and L858R occupancy, providing an explanation for OSI on-target resistance to the C797S mutation. The PBPK model identified ABCB1 CLint,u, albumin level, and EGFR expression as key factors affecting plasma Ctrough and intracranial EO for OSI. Additionally, PBPK-EO simulations indicated that the optimal dosing regimen for OSI in patients with brain metastases is either 80 mg once daily (OD) or 160 mg OD, or 40 mg or 80 mg twice daily (BID). When used concomitantly with CYP enzyme perpetrators, the PBPK-EO model suggested appropriate dosing regimens of 80 mg OD with fluvoxamine (FLUV) itraconazole (ITR) or fluvoxamine (FLUC) for co-administration and an increase to 160 mg OD with rifampicin (RIF) or efavirenz (EFA). In conclusion, the PBPK-EO model has been shown to be capable of simulating the pharmacokinetic concentration-time profiles and the time-course of EGFR engagement for OSI, as well as determining the optimum dosing in various clinical situations.
Collapse
Affiliation(s)
- Feng Liang
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Yimei Zhang
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Qian Xue
- Bethune International Peace Hospital, Shijiazhuang, China
| | - Xiaoling Zhang
- Bethune International Peace Hospital, Shijiazhuang, China.
| |
Collapse
|
9
|
Truong DT, Ho K, Nhi HTY, Nguyen VH, Dang TT, Nguyen MT. Imidazole[1,5-a]pyridine derivatives as EGFR tyrosine kinase inhibitors unraveled by umbrella sampling and steered molecular dynamics simulations. Sci Rep 2024; 14:12218. [PMID: 38806555 PMCID: PMC11133355 DOI: 10.1038/s41598-024-62743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
Although the use of the tyrosine kinase inhibitors (TKIs) has been proved that it can save live in a cancer treatment, the currently used drugs bring in many undesirable side-effects. Therefore, the search for new drugs and an evaluation of their efficiency are intensively carried out. Recently, a series of eighteen imidazole[1,5-a]pyridine derivatives were synthetized by us, and preliminary analyses pointed out their potential to be an important platform for pharmaceutical development owing to their promising actions as anticancer agents and enzyme (kinase, HIV-protease,…) inhibitors. In the present theoretical study, we further analyzed their efficiency in using a realistic scenario of computational drug design. Our protocol has been developed to not only observe the atomistic interaction between the EGFR protein and our 18 novel compounds using both umbrella sampling and steered molecular dynamics simulations, but also determine their absolute binding free energies. Calculated properties of the 18 novel compounds were in detail compared with those of two known drugs, erlotinib and osimertinib, currently used in cancer treatment. Inspiringly the simulation results promote three imidazole[1,5-a]pyridine derivatives as promising inhibitors into a further step of clinical trials.
Collapse
Affiliation(s)
- Duc Toan Truong
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Kiet Ho
- Institute for Computational Science and Technology (ICST), Quang Trung Software City, Ho Chi Minh City, 70000, Vietnam
| | - Huynh Thi Yen Nhi
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam
| | - Van Ha Nguyen
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Vietnam
| | - Tuan Thanh Dang
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hoan Kiem, Hanoi, 11021, Vietnam
| | - Minh Tho Nguyen
- Laboratory for Chemical Computation and Modeling, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, 70000, Vietnam.
| |
Collapse
|
10
|
Schwarz M, Kurkunov M, Wittlinger F, Rudalska R, Wang G, Schwalm MP, Rasch A, Wagner B, Laufer SA, Knapp S, Dauch D, Gehringer M. Development of Highly Potent and Selective Covalent FGFR4 Inhibitors Based on S NAr Electrophiles. J Med Chem 2024; 67:6549-6569. [PMID: 38604131 DOI: 10.1021/acs.jmedchem.3c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.
Collapse
Affiliation(s)
- Moritz Schwarz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Maksym Kurkunov
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Florian Wittlinger
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Ramona Rudalska
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Guiqun Wang
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Martin Peter Schwalm
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Alexander Rasch
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Benedikt Wagner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Stefan Knapp
- German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von Laue Str. 15, 60438 Frankfurt am Main, Germany
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von Laue Str. 9, 60438 Frankfurt am Main, Germany
| | - Daniel Dauch
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
- Department of Medical Oncology and Pneumology, University Hospital Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Dickson P. DNA-Encoded Library Technology─A Catalyst for Covalent Ligand Discovery. ACS Chem Biol 2024; 19:802-808. [PMID: 38527941 DOI: 10.1021/acschembio.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The identification of novel covalent ligands for therapeutic purposes has long depended on serendipity, with dedicated hit finding techniques emerging only in the early 2000s. Advances in chemoproteomics have enabled robust characterization of putative drugs to derisk the unique liabilities associated with covalent hit molecules, leading to a renewed interest in this targeting modality. DNA-encoded library (DEL) technology has similarly emerged over the past two decades as a highly efficient method to identify new chemical equity toward protein targets of interest. A number of commercial and academic groups have reported methods in covalent DEL synthesis and hit identification; however, it is evident that there is still much to be done to fully realize the power of this technology for covalent ligand discovery. This perspective will explore the current approaches in covalent DEL technology and reflect on the next steps to advance this field.
Collapse
Affiliation(s)
- Paige Dickson
- X-Chem Inc., 100 Beaver Street, Waltham, Massachusetts 02453, United States
| |
Collapse
|
12
|
Liang F, Zhang Y, Xue Q, Yao N. Exploring inter-ethnic and inter-patient variability and optimal dosing of osimertinib: a physiologically based pharmacokinetic modeling approach. Front Pharmacol 2024; 15:1363259. [PMID: 38500771 PMCID: PMC10946252 DOI: 10.3389/fphar.2024.1363259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Purpose: This study aimed to develop and validate a physiologically based pharmacokinetic (PBPK) model for osimertinib (OSI) to predict plasma trough concentration (Ctrough) and pulmonary EGFRm+ (T790M and L858R mutants) inhibition in Caucasian, Japanese, and Chinese populations. The PBPK model was also utilized to investigate inter-ethnic and inter-patient differences in OSI pharmacokinetics (PK) and determine optimal dosing regimens. Methods: Population PBPK models of OSI for healthy and disease populations were developed using physicochemical and biochemical properties of OSI and physiological parameters of different groups. And then the PBPK models were validated using the multiple clinical PK and drug-drug interaction (DDI) study data. Results: The model demonstrated good consistency with the observed data, with most of prediction-to-observation ratios of 0.8-1.25 for AUC, Cmax, and Ctrough. The PBPK model revealed that plasma exposure of OSI was approximately 2-fold higher in patients compared to healthy individuals, and higher exposure observed in Caucasians compared to other ethnic groups. This was primarily attributed to a lower CL/F of OSI in patients and Caucasian. The PBPK model displayed that key factors influencing PK and EGFRm+ inhibition differences included genetic polymorphism of CYP3A4, CYP1A2 expression, plasma free concentration (fup), albumin level, and auto-inhibition/induction on CYP3A4. Inter-patient PK variability was most influenced by CYP3A4 variants, fup, and albumin level. The PBPK simulations indicated that the optimal dosing regimen for patients across the three populations of European, Japanese, and Chinese ancestry was OSI 80 mg once daily (OD) to achieve the desired range of plasma Ctrough (328-677 nmol/L), as well as 80 mg and 160 mg OD for desirable pulmonary EGFRm+ inhibition (>80%). Conclusion: In conclusion, this study's PBPK simulations highlighted potential ethnic and inter-patient variability in OSI PK and EGFRm+ inhibition between Caucasian, Japanese, and Chinese populations, while also providing insights into optimal dosing regimens of OSI.
Collapse
Affiliation(s)
| | | | | | - Na Yao
- Bethune International Peace Hospital, Shijiazhuang, China
| |
Collapse
|
13
|
Yalamanchali A, Hassan KA. MUC1-C: The Occam Razor of Osimertinib Resistance? J Thorac Oncol 2024; 19:370-372. [PMID: 38453323 DOI: 10.1016/j.jtho.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 03/09/2024]
Affiliation(s)
| | - Khaled A Hassan
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
14
|
Hoyt KW, Urul DA, Ogboo BC, Wittlinger F, Laufer SA, Schaefer EM, May EW, Heppner DE. Pitfalls and Considerations in Determining the Potency and Mutant Selectivity of Covalent Epidermal Growth Factor Receptor Inhibitors. J Med Chem 2024; 67:2-16. [PMID: 38134304 DOI: 10.1021/acs.jmedchem.3c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Enzyme inhibitors that form covalent bonds with their targets are being increasingly pursued in drug development. Assessing their biochemical activity relies on time-dependent assays, which are distinct and more complex compared with methods commonly employed for reversible-binding inhibitors. To provide general guidance to the covalent inhibitor development community, we explored methods and reported kinetic values and experimental factors in determining the biochemical activity of various covalent epidermal growth factor receptor (EGFR) inhibitors. We showcase how liquid handling and assay reagents impact kinetic parameters and potency interpretations, which are critical for structure-kinetic relationships and covalent drug design. Additionally, we include benchmark kinetic values with reference inhibitors, which are imperative, as covalent EGFR inhibitor kinetic values are infrequently consistent in the literature. This overview seeks to inform best practices for developing new covalent inhibitors and highlight appropriate steps to address gaps in knowledge presently limiting assay reliability and reproducibility.
Collapse
Affiliation(s)
- Kristopher W Hoyt
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Daniel A Urul
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Blessing C Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Erik M Schaefer
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - Earl W May
- AssayQuant Technologies, Inc., Marlboro, Massachusetts 01752, United States
| | - David E Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
- Department of Structural Biology, The State University of New York, Buffalo, New York 14203, United States
| |
Collapse
|
15
|
Lenchner DS, Petrova ZO, Hunihan L, Ashtekar KD, Walther Z, Wilson FH. A destabilizing Y891D mutation in activated EGFR impairs sensitivity to kinase inhibition. NPJ Precis Oncol 2024; 8:3. [PMID: 38182677 PMCID: PMC10770066 DOI: 10.1038/s41698-023-00490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024] Open
Abstract
EGFR tyrosine kinase inhibitors (TKIs) have transformed the treatment of EGFR-mutated non-small cell lung carcinoma (NSCLC); however, therapeutic resistance remains a clinical challenge. Acquired secondary EGFR mutations that increase ATP affinity and/or impair inhibitor binding are well-described mediators of resistance. Here we identify a de novo EGFR Y891D secondary alteration in a NSCLC with EGFR L858R. Acquired EGFR Y891D alterations were previously reported in association with resistance to first generation EGFR TKIs. Functional studies in Ba/F3 cells demonstrate reduced TKI sensitivity of EGFR L858R + Y891D, with the greatest reduction observed for first and second generation TKIs. Unlike other EGFR mutations associated with TKI resistance, Y891D does not significantly alter ATP affinity or promote steric hindrance to inhibitor binding. Our data suggest that the Y891D mutation destabilizes EGFR L858R, potentially generating a population of misfolded receptor with preserved signaling capacity but reduced sensitivity to EGFR inhibitors. These findings raise the possibility of protein misfolding as a mechanism of resistance to EGFR inhibition in EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Daniel S Lenchner
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Zaritza O Petrova
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Lisa Hunihan
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Kumar D Ashtekar
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cancer Biology Institute, Yale University West Campus, West Haven, CT, USA
| | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Frederick H Wilson
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Hashimoto Y, Maeda K, Shimomura O, Miyazaki Y, Hashimoto S, Moriyama A, Oda T, Kusuhara H. Evaluation of the risk of diarrhea induced by epidermal growth factor receptor tyrosine kinase inhibitors with cultured intestinal stem cells originated from crypts in humans and monkeys. Toxicol In Vitro 2023; 93:105691. [PMID: 37660997 DOI: 10.1016/j.tiv.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/13/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Severe diarrhea is a common side effect of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). We aimed to evaluate the risk of EGFR-TKI-induced diarrhea using spheroids of human and monkey crypt-derived intestinal stem cells. Intestinal spheroids exhibited higher toxic susceptibility to EGFR-TKIs than Caco-2 cells. As concentration of EGFR-TKIs increased, cellular ATP first decreased relative to the control condition, followed by an increase in LDH release, in contrast with their simultaneous changes with traditional cytotoxic anticancer drugs. The toxic sensitivity of spheroids to various EGFR-TKIs corresponded to clinical diarrhea incidence. Afatinib, a second-generation EGFR-TKI, exhibited higher toxic sensitivity compared with the first-generation ones, corresponding to the clinical evidence that afatinib-induced diarrhea is almost inevitable and severe. By contrast, the third-generation osimertinib, which reduces the risk of diarrhea, showed mitigated cytotoxicity compared with afatinib. For irreversible EGFR-TKIs, the decreased ATP level persisted or its recovery was delayed even after drug removal compared with reversible ones. Furthermore, the highest drug accumulation in spheroids (TKIspheroids) and inhibition potency against EGFR (TKIspheroids/Ki) were observed for afatinib. This system would be useful for predicting the risk of EGFR-TKI-induced diarrhea; moreover, on-target cytotoxicity against intestinal stem cells might contribute to clinically observed diarrhea.
Collapse
Affiliation(s)
- Yoshiki Hashimoto
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuya Maeda
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan; Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, Tokyo, Japan.
| | - Osamu Shimomura
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Yoshihiro Miyazaki
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Shinji Hashimoto
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Akiko Moriyama
- Pathology Department, Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd., Kagoshima, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
17
|
Hassani B, Zare F, Emami L, Khoshneviszadeh M, Fazel R, Kave N, Sabet R, Sadeghpour H. Synthesis of 3-hydroxypyridin-4-one derivatives bearing benzyl hydrazide substitutions towards anti-tyrosinase and free radical scavenging activities. RSC Adv 2023; 13:32433-32443. [PMID: 37942455 PMCID: PMC10629491 DOI: 10.1039/d3ra06490e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Tyrosinase is a vital enzyme in the biosynthesis of melanin, which has a significant role in skin protection. Due to the importance of the tyrosinase enzyme in the cosmetics and health industries, studies to design new tyrosinase inhibitors have been expanded. In this study, the design and synthesis of 3-dihydroxypyridine-4-one derivatives containing benzo hydrazide groups with different substitutions were carried out, and their antioxidant and anti-tyrosinase activities were also evaluated. The proposed compounds showed tyrosinase inhibitory effects (IC50) in the 25.29 to 64.13 μM range. Among all compounds, 6i showed potent anti-tyrosinase activity with an IC50 = 25.29 μM. Also, the antioxidant activity of derivatives by using DPPH radical scavenging indicates an EC50 value between 0.039 and 0.389 mM. Molecular docking studies were performed to reveal the position and interactions of 6i as the most potent inhibitor within the tyrosinase active site. The results showed that 6i binds well to the proposed binding site and forms a stable complex with the target protein. Furthermore, the physicochemical profiles of the tested compounds indicated drug-like and bioavailability properties. The kinetic assay revealed that 6i acts as a competitive inhibitor. Also, for the estimation of the reactivity of the best compound (6i), the density functional theory (DFT) was performed at the B3LYP/6-31+G**.
Collapse
Affiliation(s)
- Bahareh Hassani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Fateme Zare
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Leila Emami
- Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Fazel
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Negin Kave
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| | - Hossein Sadeghpour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences Shiraz Iran +98-7132424126 +98-7132424127-8
| |
Collapse
|
18
|
Hartung IV, Rudolph J, Mader MM, Mulder MPC, Workman P. Expanding Chemical Probe Space: Quality Criteria for Covalent and Degrader Probes. J Med Chem 2023; 66:9297-9312. [PMID: 37403870 PMCID: PMC10388296 DOI: 10.1021/acs.jmedchem.3c00550] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Indexed: 07/06/2023]
Abstract
Within druggable target space, new small-molecule modalities, particularly covalent inhibitors and targeted degraders, have expanded the repertoire of medicinal chemists. Molecules with such modes of action have a large potential not only as drugs but also as chemical probes. Criteria have previously been established to describe the potency, selectivity, and properties of small-molecule probes that are qualified to enable the interrogation and validation of drug targets. These definitions have been tailored to reversibly acting modulators but fall short in their applicability to other modalities. While initial guidelines have been proposed, we delineate here a full set of criteria for the characterization of covalent, irreversible inhibitors as well as heterobifunctional degraders ("proteolysis-targeting chimeras", or PROTACs) and molecular glue degraders. We propose modified potency and selectivity criteria compared to those for reversible inhibitors. We discuss their relevance and highlight examples of suitable probe and pathfinder compounds.
Collapse
Affiliation(s)
- Ingo V. Hartung
- Medicinal
Chemistry, Global Research & Development, Merck Healthcare KGaA, 64293 Darmstadt, Germany
| | - Joachim Rudolph
- Discovery
Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Mary M. Mader
- Molecular
Innovation, Indiana Biosciences Research
Institute, Indianapolis, Indiana 64202, United States
| | - Monique P. C. Mulder
- Department
of Cell and Chemical Biology, Leiden University
Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul Workman
- Centre
for Cancer Drug Discovery, The Institute
of Cancer Research, London, Sutton SM2 5NG, United Kingdom
- Chemical
Probes Portal, https://www.chemicalprobes.org/
| |
Collapse
|
19
|
Nitulescu GM, Stancov G, Seremet OC, Nitulescu G, Mihai DP, Duta-Bratu CG, Barbuceanu SF, Olaru OT. The Importance of the Pyrazole Scaffold in the Design of Protein Kinases Inhibitors as Targeted Anticancer Therapies. Molecules 2023; 28:5359. [PMID: 37513232 PMCID: PMC10385367 DOI: 10.3390/molecules28145359] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The altered activation or overexpression of protein kinases (PKs) is a major subject of research in oncology and their inhibition using small molecules, protein kinases inhibitors (PKI) is the best available option for the cure of cancer. The pyrazole ring is extensively employed in the field of medicinal chemistry and drug development strategies, playing a vital role as a fundamental framework in the structure of various PKIs. This scaffold holds major importance and is considered a privileged structure based on its synthetic accessibility, drug-like properties, and its versatile bioisosteric replacement function. It has proven to play a key role in many PKI, such as the inhibitors of Akt, Aurora kinases, MAPK, B-raf, JAK, Bcr-Abl, c-Met, PDGFR, FGFRT, and RET. Of the 74 small molecule PKI approved by the US FDA, 8 contain a pyrazole ring: Avapritinib, Asciminib, Crizotinib, Encorafenib, Erdafitinib, Pralsetinib, Pirtobrutinib, and Ruxolitinib. The focus of this review is on the importance of the unfused pyrazole ring within the clinically tested PKI and on the additional required elements of their chemical structures. Related important pyrazole fused scaffolds like indazole, pyrrolo[1,2-b]pyrazole, pyrazolo[4,3-b]pyridine, pyrazolo[1,5-a]pyrimidine, or pyrazolo[3,4-d]pyrimidine are beyond the subject of this work.
Collapse
Affiliation(s)
| | | | | | - Georgiana Nitulescu
- Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (G.M.N.)
| | | | | | | | | |
Collapse
|
20
|
Mansour MA, AboulMagd AM, Abbas SH, Abdel-Rahman HM, Abdel-Aziz M. Insights into fourth generation selective inhibitors of (C797S) EGFR mutation combating non-small cell lung cancer resistance: a critical review. RSC Adv 2023; 13:18825-18853. [PMID: 37350862 PMCID: PMC10282734 DOI: 10.1039/d3ra02347h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Lung cancer is the second most common cause of morbidity and mortality among cancer types worldwide, with non-small cell lung cancer (NSCLC) representing the majority of most cases. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are among the most commonly used targeted therapy to treat NSCLC. Recent years have seen the evaluation of many synthetic EGFR TKIs, most of which showed therapeutic activity in pertinent models and were classified as first, second, and third-generation. The latest studies have concluded that their efficacy was also compromised by additional acquired mutations, including C797S. Because second- and third-generation EGFR TKIs are irreversible inhibitors, they are ineffective against C797S containing EGFR triple mutations (Del19/T790M/C797S and L858R/T790M/C797S). Therefore, there is an urgent unmet medical need to develop next-generation EGFR TKIs that selectively inhibit EGFR triple mutations via a non-irreversible mechanism. This review covers the fourth-generation EGFR-TKIs' most recent design with their essential binding interactions, the clinical difficulties, and the potential outcomes of treating patients with EGFR mutation C797S resistant to third-generation EGFR-TKIs was also discussed. Moreover, the utilization of various therapeutic strategies, including multi-targeting drugs and combination therapies, has also been reviewed.
Collapse
Affiliation(s)
- Mostafa A Mansour
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Asmaa M AboulMagd
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Nahda University in Beni-Suef (NUB) Beni-Suef 62513 Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| | - Hamdy M Abdel-Rahman
- Medicinal Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Assiut (BUA) Assiut 2014101 Egypt
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
21
|
Yang J, Tabuchi Y, Katsuki R, Taki M. bioTCIs: Middle-to-Macro Biomolecular Targeted Covalent Inhibitors Possessing Both Semi-Permanent Drug Action and Stringent Target Specificity as Potential Antibody Replacements. Int J Mol Sci 2023; 24:3525. [PMID: 36834935 PMCID: PMC9968108 DOI: 10.3390/ijms24043525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Monoclonal antibody therapies targeting immuno-modulatory targets such as checkpoint proteins, chemokines, and cytokines have made significant impact in several areas, including cancer, inflammatory disease, and infection. However, antibodies are complex biologics with well-known limitations, including high cost for development and production, immunogenicity, a limited shelf-life because of aggregation, denaturation, and fragmentation of the large protein. Drug modalities such as peptides and nucleic acid aptamers showing high-affinity and highly selective interaction with the target protein have been proposed alternatives to therapeutic antibodies. The fundamental limitation of short in vivo half-life has prevented the wide acceptance of these alternatives. Covalent drugs, also known as targeted covalent inhibitors (TCIs), form permanent bonds to target proteins and, in theory, eternally exert the drug action, circumventing the pharmacokinetic limitation of other antibody alternatives. The TCI drug platform, too, has been slow in gaining acceptance because of its potential prolonged side-effect from off-target covalent binding. To avoid the potential risks of irreversible adverse drug effects from off-target conjugation, the TCI modality is broadening from the conventional small molecules to larger biomolecules possessing desirable properties (e.g., hydrolysis resistance, drug-action reversal, unique pharmacokinetics, stringent target specificity, and inhibition of protein-protein interactions). Here, we review the historical development of the TCI made of bio-oligomers/polymers (i.e., peptide-, protein-, or nucleic-acid-type) obtained by rational design and combinatorial screening. The structural optimization of the reactive warheads and incorporation into the targeted biomolecules enabling a highly selective covalent interaction between the TCI and the target protein is discussed. Through this review, we hope to highlight the middle to macro-molecular TCI platform as a realistic replacement for the antibody.
Collapse
Affiliation(s)
- Jay Yang
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706, USA
- Department of GI Surgery II, Graduate School of Medicine, Hokkaido University, Sapporo 068-8638, Japan
| | - Yudai Tabuchi
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Riku Katsuki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
| | - Masumi Taki
- Department of Engineering Science, Graduate School of Informatics and Engineering, University of Electro-Communications (UEC), 1-5-1 Chofugaoka, Chofu 182-8585, Japan
- Institute for Advanced Science, UEC, Chofu 182-8585, Japan
| |
Collapse
|
22
|
Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nat Commun 2022; 13:6791. [PMID: 36357385 PMCID: PMC9649653 DOI: 10.1038/s41467-022-34398-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are used to treat non-small cell lung cancers (NSCLC) driven by epidermal growth factor receptor (EGFR) mutations in the tyrosine kinase domain (TKD). TKI responses vary across tumors driven by the heterogeneous group of exon 19 deletions and mutations, but the molecular basis for these differences is not understood. Using purified TKDs, we compared kinetic properties of several exon 19 variants. Although unaltered for the second generation TKI afatinib, sensitivity varied significantly for both the first and third generation TKIs erlotinib and osimertinib. The most sensitive variants showed reduced ATP-binding affinity, whereas those associated with primary resistance retained wild type ATP-binding characteristics (and low KM, ATP). Through crystallographic and hydrogen-deuterium exchange mass spectrometry (HDX-MS) studies, we identify possible origins for the altered ATP-binding affinity underlying TKI sensitivity and resistance, and propose a basis for classifying uncommon exon 19 variants that may have predictive clinical value.
Collapse
|
23
|
Heppner DE, Wittlinger F, Beyett TS, Shaurova T, Urul DA, Buckley B, Pham CD, Schaeffner IK, Yang B, Ogboo BC, May EW, Schaefer EM, Eck MJ, Laufer SA, Hershberger PA. Structural Basis for Inhibition of Mutant EGFR with Lazertinib (YH25448). ACS Med Chem Lett 2022; 13:1856-1863. [DOI: 10.1021/acsmedchemlett.2c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- David E. Heppner
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Florian Wittlinger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tyler S. Beyett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Daniel A. Urul
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Brian Buckley
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| | - Calvin D. Pham
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Ilse K. Schaeffner
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Bo Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Blessing C. Ogboo
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Earl W. May
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Erik M. Schaefer
- AssayQuant Technologies, Inc., 260 Cedar Hill St., Marlboro, Massachusetts 01752, United States
| | - Michael J. Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Stefan A. Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
- Tübingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Pamela A. Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, New York 14203, United States
| |
Collapse
|
24
|
Chaurasia A, Marya A. Editorial for “Preoperative
MRI
‐Based Radiomics of Brain Metastasis to Assess
T790M
Resistance Mutation After
EGFR‐TKI
Treatment in
NSCLC
”. J Magn Reson Imaging 2022; 57:1788-1789. [PMID: 36282539 DOI: 10.1002/jmri.28444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Akhilanand Chaurasia
- Department of Oral Medicine and Radiology King George Medical University Lucknow Uttar Pradesh India
| | - Anand Marya
- Department of Orthodontics, Faculty of Dentistry University of Puthisastra Phnom Penh Cambodia
- Center for Transdisciplinary Research Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University Chennai India
| |
Collapse
|
25
|
Fan Y, He L, Yang H, Wang Y, Su J, Hou S, Luo Y, Jiang X. Preoperative MRI-Based Radiomics of Brain Metastasis to Assess T790M Resistance Mutation After EGFR-TKI Treatment in NSCLC. J Magn Reson Imaging 2022; 57:1778-1787. [PMID: 36165534 DOI: 10.1002/jmri.28441] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Preoperative assessment of the acquired resistance T790M mutation in patients with metastatic non-small cell lung cancer (NSCLC) based on brain metastasis (BM) is important for early treatment decisions. PURPOSE To investigate preoperative magnetic resonance imaging (MRI)-based radiomics for assessing T790M resistance mutation after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment in NSCLC patients with BM. STUDY TYPE Retrospective. POPULATION One hundred and ten primary NSCLC patients with pathologically confirmed BM and T790M mutation status assessment from two centers divided into primary training (N = 53), internal validation (N = 27), and external validation (N = 30) sets. FIELD STRENGTH/SEQUENCE Contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) fast spin echo sequences at 3.0 T. ASSESSMENT Forty-five (40.9%) patients were T790M-positive and 65 (59.1%) patients were T790M-negative. The tumor active area (TAA) and peritumoral edema area (POA) of BM were delineated on pre-treatment T1CE and T2W images. Radiomics signatures were built based on features selected from TAA (RS-TAA), POA (RS-POA), and their combination (RS-Com) to assess the T790M resistance mutation after EGFR-TKI treatment. STATISTICAL TESTS Receiver operating characteristic (ROC) curves were used to assess the capabilities of the developed RSs. The area under the ROC curves (AUC), sensitivity, and specificity were generated as comparison metrics. RESULTS We identified two features (from TAA) and three features (from POA) that are highly associated with the T790M mutation status. The developed RS-TAA, RS-POA, and RS-Com showed good performance, with AUCs of 0.807, 0.807, and 0.864 in the internal validation, and 0.783, 0.814, and 0.860 in the external validation sets, respectively. DATA CONCLUSION Pretreatment brain MRI of NSCLC patients with BM might effectively detect the T790M resistance mutation, with both TAA and POA having important values. The multi-region combined radiomics signature may have potential to be a new biomarker for assessing T790M mutation. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Fan
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Juan Su
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Shaoping Hou
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Yahong Luo
- Department of Radiology, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiran Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Todsaporn D, Mahalapbutr P, Poo-Arporn RP, Choowongkomon K, Rungrotmongkol T. Structural dynamics and kinase inhibitory activity of three generations of tyrosine kinase inhibitors against wild-type, L858R/T790M, and L858R/T790M/C797S forms of EGFR. Comput Biol Med 2022; 147:105787. [PMID: 35803080 DOI: 10.1016/j.compbiomed.2022.105787] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/25/2022] [Accepted: 06/26/2022] [Indexed: 11/19/2022]
Abstract
Mutations in the tyrosine kinase domain of epidermal growth factor receptor (EGFR), including L858R/T790M double and L858R/T790M/C797S triple mutations, are major causes of acquired resistance towards EGFR targeted drugs. In this work, a combination of comprehensive molecular modeling and in vitro kinase inhibition assay was used to unravel the mutational effects of EGFR on the susceptibility of three generations of EGFR tyrosine kinase inhibitors (erlotinib, gefitinib, afatinib, dacomitinib, and osimertinib) in comparison with the wild-type EGFR. The binding affinity of all studied inhibitors towards the double and triple EGFR mutations was in good agreement with the experimental data, ranked in the order of osimertinib > afatinib > dacomitinib > erlotinib > gefitinib. Three hot-spot residues at the hinge region (M790, M793, and C797) were involved in the binding of osimertinib and afatinib, enhancing their inhibitory activity towards mutated EGFRs. Both double and triple EGFR mutations causing erlotinib and gefitinib resistance are mainly caused by the low number of H-bond occupations, the low number of surrounding atoms, and the high number of water molecules accessible to the enzyme active site. According to principal component analysis, the molecular complexation of osimertinib against the two mutated EGFRs was in a closed conformation, whereas that against wild-type EGFR was in an open conformation, resulting in drug resistance. This work paves the way for further design of the novel EGFR inhibitors to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
- Duangjai Todsaporn
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, and Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Rungtiva P Poo-Arporn
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Mons E, Roet S, Kim RQ, Mulder MPC. A Comprehensive Guide for Assessing Covalent Inhibition in Enzymatic Assays Illustrated with Kinetic Simulations. Curr Protoc 2022; 2:e419. [PMID: 35671150 DOI: 10.1002/cpz1.419] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covalent inhibition has become more accepted in the past two decades, as illustrated by the clinical approval of several irreversible inhibitors designed to covalently modify their target. Elucidation of the structure-activity relationship and potency of such inhibitors requires a detailed kinetic evaluation. Here, we elucidate the relationship between the experimental read-out and the underlying inhibitor binding kinetics. Interactive kinetic simulation scripts are employed to highlight the effects of in vitro enzyme activity assay conditions and inhibitor binding mode, thereby showcasing which assumptions and corrections are crucial. Four stepwise protocols to assess the biochemical potency of (ir)reversible covalent enzyme inhibitors targeting a nucleophilic active site residue are included, with accompanying data analysis tailored to the covalent binding mode. Together, this will serve as a guide to make an educated decision regarding the most suitable method to assess covalent inhibition potency. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol I: Progress curve analysis of substrate association competition Basic Data Analysis Protocol 1A: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 1B: One-step irreversible covalent inhibition Basic Data Analysis Protocol 1C: Two-step reversible covalent inhibition Basic Data Analysis Protocol 1D: Two-step irreversible covalent inhibition with substrate depletion Basic Protocol II: Incubation time-dependent potency IC50 (t) Basic Data Analysis Protocol 2: Two-step irreversible covalent inhibition Basic Protocol III: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3: Preincubation time-dependent inhibition without dilution Basic Data Analysis Protocol 3Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 3Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 3Bii: One-step irreversible covalent inhibition Basic Data Analysis Protocol 3C: Two-step reversible covalent inhibition Basic Protocol IV: Preincubation time-dependent inhibition with dilution/competition Basic Data Analysis Protocol 4: Preincubation time-dependent inhibition with dilution Basic Data Analysis Protocol 4Ai: Two-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Aii: Two-step irreversible covalent inhibition Basic Data Analysis Protocol 4Bi: One-step irreversible covalent inhibition Alternative Data Analysis Protocol 4Bii: One-step irreversible covalent inhibition.
Collapse
Affiliation(s)
- Elma Mons
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands.,Current: Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Sander Roet
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Robbert Q Kim
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Monique P C Mulder
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
28
|
Beyett TS, To C, Heppner DE, Rana JK, Schmoker AM, Jang J, De Clercq DJH, Gomez G, Scott DA, Gray NS, Jänne PA, Eck MJ. Molecular basis for cooperative binding and synergy of ATP-site and allosteric EGFR inhibitors. Nat Commun 2022; 13:2530. [PMID: 35534503 PMCID: PMC9085736 DOI: 10.1038/s41467-022-30258-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is frequently caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric EGFR inhibitors offer promise as the next generation of therapeutics, as they are unaffected by common ATP-site resistance mutations and synergize with the drug osimertinib. Here, we examine combinations of ATP-competitive and allosteric inhibitors to better understand the molecular basis for synergy. We identify a subset of irreversible EGFR inhibitors that display positive binding cooperativity and synergy with the allosteric inhibitor JBJ-04-125-02 in several EGFR variants. Structural analysis of these complexes reveals conformational changes occur mainly in the phosphate-binding loop (P-loop). Mutation of F723 in the P-loop reduces cooperative binding and synergy, supporting a mechanism in which F723-mediated contacts between the P-loop and the allosteric inhibitor are critical for synergy. These structural and mechanistic insights will aid in the identification and development of additional inhibitor combinations with potential clinical value. Acquired drug resistance is common during chemotherapy. Here, the authors describe the structural basis and molecular mechanism by which allosteric and clinically approved, ATP-competitive inhibitors of EGFR synergize to overcome resistance in lung cancer.
Collapse
|
29
|
Ferlenghi F, Scalvini L, Vacondio F, Castelli R, Bozza N, Marseglia G, Rivara S, Lodola A, La Monica S, Minari R, Petronini PG, Alfieri R, Tiseo M, Mor M. A sulfonyl fluoride derivative inhibits EGFR L858R/T790M/C797S by covalent modification of the catalytic lysine. Eur J Med Chem 2021; 225:113786. [PMID: 34464874 DOI: 10.1016/j.ejmech.2021.113786] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
The emergence of the C797S mutation in EGFR is a frequent mechanism of resistance to osimertinib in the treatment of non-small cell lung cancer (NSCLC). In the present work, we report the design, synthesis and biochemical characterization of UPR1444 (compound 11), a new sulfonyl fluoride derivative which potently and irreversibly inhibits EGFRL858R/T790M/C797S through the formation of a sulfonamide bond with the catalytic residue Lys745. Enzymatic assays show that compound 11 displayed an inhibitory activity on EGFRWT comparable to that of osimertinib, and it resulted more selective than the sulfonyl fluoride probe XO44, recently reported to inhibit a significant part of the kinome. Neither compound 11 nor XO44 inhibited EGFRdel19/T790M/C797S triple mutant. When tested in Ba/F3 cells expressing EGFRL858R/T790M/C797S, compound 11 resulted significantly more potent than osimertinib at inhibiting both EGFR autophosphorylation and proliferation, even if the inhibition of EGFR autophosphorylation by compound 11 in Ba/F3 cells was not long lasting.
Collapse
Affiliation(s)
| | - Laura Scalvini
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | | - Nicole Bozza
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | - Silvia Rivara
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Alessio Lodola
- Department of Food and Drug, University of Parma, Parma, Italy.
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Minari
- Medical Oncology, University Hospital of Parma, Parma, Italy
| | | | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Medical Oncology, University Hospital of Parma, Parma, Italy
| | - Marco Mor
- Department of Food and Drug, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Hoogenboom N, Demont D, de Zwart E, Verkaik S, Emmelot M, van de Kar B, Kaptein A, Barf T. Discovery and optimization of covalent EGFR T790M/L858R mutant inhibitors. Bioorg Med Chem Lett 2021; 52:128406. [PMID: 34624491 DOI: 10.1016/j.bmcl.2021.128406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022]
Abstract
Epidermal growth factor receptor (EGFR) inhibitors have clinical utility in the treatment of non-small cell lung cancer (NSCLC) patients. Despite encouraging clinical efficacy with these agents, many patients develop resistance due to sensitizing (or activating) mutations ultimately leading to disease progression. In the majority of the cases, this resistance is due to the T790M mutation and frequently coexisting L858R. In addition, EGFR wild type receptor inhibition can lead to on target related dose limiting toxicities such as rash and diarrhea. We describe herein the identification of a mutant selective lead compound 12, an irreversible covalent inhibitor of EGFR T790M/L858R resistance mutations with selectivity over the wild type form. Significant tumor growth inhibition in preclinical models was observed with this lead.
Collapse
Affiliation(s)
- Niels Hoogenboom
- Department of Medicinal Chemistry, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands.
| | - Dennis Demont
- Department of Medicinal Chemistry, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Edwin de Zwart
- Department of Medicinal Chemistry, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Saskia Verkaik
- Department of Medicinal Chemistry, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Maaike Emmelot
- Department of Biology and Translational, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Bas van de Kar
- Department of Biology and Translational, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Allard Kaptein
- Department of Biology and Translational, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| | - Tjeerd Barf
- Department of Medicinal Chemistry, Acerta Pharma BV, Kloosterstraat 9, 5349 AB Oss, the Netherlands
| |
Collapse
|
31
|
Huo KG, Notsuda H, Fang Z, Liu NF, Gebregiworgis T, Li Q, Pham NA, Li M, Liu N, Shepherd FA, Marshall CB, Ikura M, Moghal N, Tsao MS. Lung cancer driven by BRAF G469V mutation is targetable by EGFR kinase inhibitors. J Thorac Oncol 2021; 17:277-288. [PMID: 34648945 DOI: 10.1016/j.jtho.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Mutations in BRAF occur in 2-4% of lung adenocarcinoma (LUAD) patients. Combination dabrafenib/trametinib or single-agent vemurafenib is approved only for patients with cancers driven by the V600E BRAF mutation. Targeted therapy is not currently available for patients harboring non-V600 BRAF mutations. METHODS An LUAD patient-derived xenograft (PDX) model (PHLC12) with wild-type and non-amplified epidermal growth factor receptor (EGFR) was tested for response to EGFR tyrosine kinase inhibitors (TKI). A cell line derived from this model (X12CL) was also used to evaluate drug sensitivity and to identify potential drivers by siRNA knockdown. Kinase assays were used to test direct targeting of the candidate driver by the EGFR TKIs. Structural modeling including, molecular dynamics (MD) simulations, and binding assays were conducted to explore the mechanism of off-target inhibition by EGFR TKIs on the model 12 driver. RESULTS Both PDX PHLC12 and the X12CL cell line were sensitive to multiple EGFR TKIs. The BRAFG469V mutation was found to be the only known oncogenic mutation in this model. siRNA knockdown of BRAF, but not the EGFR, killed X12CL, confirming BRAFG469V as the oncogenic driver. Kinase activity of the BRAF protein isolated from X12CL was inhibited by treatment with the EGFR TKIs gefitinib and osimertinib, and expression of BRAFG469V in non-EGFR-expressing NR6 cells promoted growth in low serum, which was also sensitive to EGFR TKIs. . Structural modeling, MD simulations, and in vitro binding assays support BRAFG469V being a direct target of the TKIs. CONCLUSION Clinically approved EGFR TKIs can be repurposed to treat NSCLC patients harboring the BRAFG469V mutation.
Collapse
Affiliation(s)
- Ku-Geng Huo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Hirotsugu Notsuda
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Thoracic Surgery Institute of Development, Aging and Cancer, Tohoku University. Sendai, Japan
| | - Zhenhao Fang
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Ningdi Feng Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Quan Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ming Li
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Ni Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Choi G, Kim D, Oh J. AI-Based Drug Discovery of TKIs Targeting L858R/T790M/C797S-Mutant EGFR in Non-small Cell Lung Cancer. Front Pharmacol 2021; 12:660313. [PMID: 34393769 PMCID: PMC8356077 DOI: 10.3389/fphar.2021.660313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 11/25/2022] Open
Abstract
Lung cancer has a high mortality rate, and non-small cell lung cancer (NSCLC) is the most common type of lung cancer. Patients have been observed to acquire resistance against various anticancer agents used for NSCLC due to L858R (or Exon del19)/T790M/C797S-EGFR mutations. Therefore, next-generation drugs are being developed to overcome this problem of acquired resistance. The goal of this study was to use artificial intelligence (AI) to discover drug candidates that can overcome acquired resistance and reduce the limitations of the current drug discovery process, such as high costs and long durations of drug design and production. To generate ligands using AI, we collected data related to tyrosine kinase inhibitors (TKIs) from accessible libraries and used LSTM (Long short term memory) based transfer learning (TL) model. Through the simplified molecular-input line-entry system (SMILES) datasets of the generated ligands, we obtained drug-like ligands via parameter-filtering, cyclic skeleton (CSK) analysis, and virtual screening utilizing deep-learning method. Based on the results of this study, we are developing prospective EGFR TKIs for NSCLC that have overcome the limitations of existing third-generation drugs.
Collapse
Affiliation(s)
- Geunho Choi
- AI LAB, AllLive Healthcare Co.,Ltd., Seongnam, Korea
| | - Daegeun Kim
- AI LAB, AllLive Healthcare Co.,Ltd., Seongnam, Korea
| | - Junehwan Oh
- AI LAB, AllLive Healthcare Co.,Ltd., Seongnam, Korea
| |
Collapse
|
33
|
Wittlinger F, Laufer SA. The pre-clinical discovery and development of osimertinib used to treat non-small cell lung cancer. Expert Opin Drug Discov 2021; 16:1091-1103. [PMID: 34053372 DOI: 10.1080/17460441.2021.1936496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Osimertinib is currently the only FDA- and EMA-approved third-generation small-molecule epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI). It was initially indicated for second-line treatment of patients with metastatic EGFR T790M mutation-positive non-small cell lung cancer (NSCLC) and got approved for first-line treatment of EGFR activation mutation-positive metastatic NSCLC in 2018. Most recently, the FDA granted approval for the adjuvant treatment of patients with early-stage mutated EGFR NSCLC after tumor resection.Areas covered: This drug discovery case history focuses on the key studies that led to the preclinical discovery and development of osimertinib. The authors focus on published preclinical studies by scientists from AstraZeneca and highlight key events in the clinical development.Expert opinion: Although eventually compromised by the cellular plasticity of the tumor and the inevitable acquisition of drug resistance through the use of osimertinib, its key role in the treatment of NSCLC with specific EGFR mutations will be maintained in the near future. As the genome of EGFR is highly labile and since the rapid development of new mutants remains an issue, there is still room for improvement for the next generation of inhibitors.
Collapse
Affiliation(s)
- Florian Wittlinger
- Tuebingen Center for Academic Drug Discovery & Development, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Stefan A Laufer
- Tuebingen Center for Academic Drug Discovery & Development, Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Tübingen, Germany
| |
Collapse
|
34
|
Comparison of Resistance Spectra after First and Second Line Osimertinib Treatment Detected by Liquid Biopsy. Cancers (Basel) 2021; 13:cancers13122861. [PMID: 34201252 PMCID: PMC8227553 DOI: 10.3390/cancers13122861] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Since the recent approval of osimertinib, a third generation tyrosine kinase inhibitor (TKI) targeting EGFR in non-small cell lung cancer (NSCLC), tracing the resistance mechanisms that yield to failure of osimertinib has become of interest. As the spectrum of osimertinib-resistance related genomic alterations appears significantly more diverse compared to first and second generation TKI, comprehensive, and preferably non-invasive molecular diagnostic methods are required for the detection of resistance mechanisms. In this study, we present molecular results of 56 NSCLC patients during disease progression on first and second line osimertinib treatment using a hybrid capture (HC) next generation sequencing (NGS) based liquid biopsy approach. We show examples of polyclonal resistance development which leads to the presence of multiple resistance mechanisms in the same patient, and highlight the clinical utility of HC NGS over single gene testing. Abstract Since 2009, several first, second, and third generation EGFR tyrosine kinase inhibitors (TKI) have been approved for targeted treatment of EGFR mutated metastatic non-small lung cancer (NSCLC). A vast majority of patients is improving quickly on treatment; however, resistance is inevitable and typically occurs after one year for TKI of the first and second generation. Osimertinib, a third generation TKI, has recently been approved for first line treatment in the palliative setting and is expected to become approved for the adjuvant setting as well. Progression-free survival (PFS) under osimertinib is superior to its predecessors but its spectrum of resistance alterations appears significantly more diverse compared to first and second generation EGFR TKI. As resistance mechanisms to osimertinib are therapeutically targetable in some cases, it is important to comprehensively test for molecular alterations in the relapse scenario. Liquid biopsy may be advantageous over tissue analysis as it has the potential to represent tumor heterogeneity and clonal diversification. We have previously shown high concordance of hybrid capture (HC) based next generation sequencing (NGS) in liquid biopsy versus solid tumor biopsies. In this study, we now present real-word data from 56 patients with metastatic NSCLC that were tested by liquid biopsy at the time of disease progression on mostly second line treated osimertinib treatment. We present examples of single and multiple TKI resistance mechanisms, including mutations in multiple pathways, copy number changes and rare fusions of RET, ALK, FGFR3 and BRAF. In addition, we present the added value of HC based NGS to reveal polyclonal resistance development at the DNA level encoding multiple EGFR C797S and PIK3CA mutations.
Collapse
|
35
|
Khurana P, McWilliams L, Wingfield J, Barratt D, Srinivasan B. A Novel High-Throughput FLIPR Tetra-Based Method for Capturing Highly Confluent Kinetic Data for Structure-Kinetic Relationship Guided Early Drug Discovery. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2021; 26:684-697. [PMID: 33783249 DOI: 10.1177/24725552211000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Target engagement by small molecules is necessary for producing a physiological outcome. In the past, a lot of emphasis was placed on understanding the thermodynamics of such interactions to guide structure-activity relationships. It is becoming clearer, however, that understanding the kinetics of the interaction between a small-molecule inhibitor and the biological target [structure-kinetic relationship (SKR)] is critical for selection of the optimum candidate drug molecule for clinical trial. However, the acquisition of kinetic data in a high-throughput manner using traditional methods can be labor intensive, limiting the number of molecules that can be tested. As a result, in-depth kinetic studies are often carried out on only a small number of compounds, and usually at a later stage in the drug discovery process. Fundamentally, kinetic data should be used to drive key decisions much earlier in the drug discovery process, but the throughput limitations of traditional methods preclude this. A major limitation that hampers acquisition of high-throughput kinetic data is the technical challenge in collecting substantially confluent data points for accurate parameter estimation from time course analysis. Here, we describe the use of the fluorescent imaging plate reader (FLIPR), a charge-coupled device (CCD) camera technology, as a potential high-throughput tool for generating biochemical kinetic data with smaller time intervals. Subsequent to the design and optimization of the assay, we demonstrate the collection of highly confluent time-course data for various kinase protein targets with reasonable throughput to enable SKR-guided medicinal chemistry. We select kinase target 1 as a special case study with covalent inhibition, and demonstrate methods for rapid and detailed analysis of the resultant kinetic data for parameter estimation. In conclusion, this approach has the potential to enable rapid kinetic studies to be carried out on hundreds of compounds per week and drive project decisions with kinetic data at an early stage in drug discovery.
Collapse
Affiliation(s)
- Puneet Khurana
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Lisa McWilliams
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Jonathan Wingfield
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Derek Barratt
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
36
|
Guan I, Williams K, Pan J, Liu X. New Cysteine Covalent Modification Strategies Enable Advancement of Proteome‐wide Selectivity of Kinase Modulators. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ivy Guan
- School of Chemistry The Heart Research Institute The University of Sydney Sydney New South Wales 2006 Australia
| | - Kayla Williams
- School of Chemistry The University of Sydney Sydney New South Wales 2006 Australia
| | - Jolyn Pan
- Faculty of Science & Engineering The University of Waikato 124 Hillcrest Road, Hillcrest Hamilton 3216 New Zealand
| | - Xuyu Liu
- School of Chemistry The Heart Research Institute The University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
37
|
Vaclova T, Grazini U, Ward L, O'Neill D, Markovets A, Huang X, Chmielecki J, Hartmaier R, Thress KS, Smith PD, Barrett JC, Downward J, de Bruin EC. Clinical impact of subclonal EGFR T790M mutations in advanced-stage EGFR-mutant non-small-cell lung cancers. Nat Commun 2021; 12:1780. [PMID: 33741979 PMCID: PMC7979775 DOI: 10.1038/s41467-021-22057-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
Advanced non-small-cell lung cancer (NSCLC) patients with EGFR T790M-positive tumours benefit from osimertinib, an epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). Here we show that the size of the EGFR T790M-positive clone impacts response to osimertinib. T790M subclonality, as assessed by a retrospective NGS analysis of 289 baseline plasma ctDNA samples from T790M-positive advanced NSCLC patients from the AURA3 phase III trial, is associated with shorter progression-free survival (PFS), both in the osimertinib and the chemotherapy-treated patients. Both baseline and longitudinal ctDNA profiling indicate that the T790M subclonal tumours are enriched for PIK3CA alterations, which we demonstrate to confer resistance to osimertinib in vitro that can be partially reversed by PI3K pathway inhibitors. Overall, our results elucidate the impact of tumour heterogeneity on response to osimertinib in advanced stage NSCLC patients and could help define appropriate combination therapies in these patients.
Collapse
Affiliation(s)
- Tereza Vaclova
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Lewis Ward
- Discovery Science, BioPharmaceutical R&D, AstraZeneca, Cambridge, UK
| | - Daniel O'Neill
- Discovery Science, BioPharmaceutical R&D, AstraZeneca, Cambridge, UK
| | | | - Xiangning Huang
- Biometrics Oncology, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Ryan Hartmaier
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kenneth S Thress
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
- Global Marketing Diagnostics, Oncology Business, AstraZeneca, Gaithersburg, MD, USA
| | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - J Carl Barrett
- Translational Medicine, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Elza C de Bruin
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
38
|
Li M, Guo J. Deciphering the T790M/L858R-Selective Inhibition Mechanism of an Allosteric Inhibitor of EGFR: Insights from Molecular Simulations. ACS Chem Neurosci 2021; 12:462-472. [PMID: 33435671 DOI: 10.1021/acschemneuro.0c00633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Allosteric inhibitors have lately received great attention because of their unique advantages, representing a more suitable choice for combinatory therapeutics targeting resistance-relevant signaling cascades. Among the various inhibitors, an allosteric small-molecule inhibitor, JBJ-04-125-02, has been proven to be effective against EGFRT790M/L858R mutant in vivo and in vitro. Herein, an in silico approach was adopted to shed light on the deep understanding of the higher selectivity of JBJ-04-125-02 against EGFRT790M/L858R mutant than wild-type EGFR. Our results indicate that JBJ-04-125-02 prefers to bind with the EGFRT790M/L858R mutant, stabilizes the inactive conformation, and further allosterically affects the conformations and dynamics of the interlobe cleft, including both the allosteric site and the ATP-binding site. Furthermore, docking results confirm that the binding of JBJ-04-125-02 at the allosteric site decreases the binding affinity of ANP (an ATP analogue) at the orthosteric site, especially for the Mut-holo one, which might further inhibit the function of EGFR. The present work provides a clear picture of the mutant-selective inhibition mechanism of an allosteric inhibitor of EGFR. The findings might pave the way for designing allosteric drugs targeting EGFR mutant lung cancer patients, which also takes a step forward in terms of drug resistance caused by protein mutations.
Collapse
Affiliation(s)
- Miaomiao Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingjing Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
39
|
Srinivasan B. Explicit Treatment of Non-Michaelis-Menten and Atypical Kinetics in Early Drug Discovery*. ChemMedChem 2020; 16:899-918. [PMID: 33231926 DOI: 10.1002/cmdc.202000791] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Biological systems are highly regulated. They are also highly resistant to sudden perturbations enabling them to maintain the dynamic equilibrium essential to sustain life. This robustness is conferred by regulatory mechanisms that influence the activity of enzymes/proteins within their cellular context to adapt to changing environmental conditions. However, the initial rules governing the study of enzyme kinetics were mostly tested and implemented for cytosolic enzyme systems that were easy to isolate and/or recombinantly express. Moreover, these enzymes lacked complex regulatory modalities. Now, with academic labs and pharmaceutical companies turning their attention to more-complex systems (for instance, multiprotein complexes, oligomeric assemblies, membrane proteins and post-translationally modified proteins), the initial axioms defined by Michaelis-Menten (MM) kinetics are rendered inadequate, and the development of a new kind of kinetic analysis to study these systems is required. This review strives to present an overview of enzyme kinetic mechanisms that are atypical and, oftentimes, do not conform to the classical MM kinetics. Further, it presents initial ideas on the design and analysis of experiments in early drug-discovery for such systems, to enable effective screening and characterisation of small-molecule inhibitors with desirable physiological outcomes.
Collapse
Affiliation(s)
- Bharath Srinivasan
- Mechanistic Biology and Profiling Discovery Sciences, R&D, AstraZeneca, 310, Milton Rd, Milton CB4 0WG, Cambridge, UK
| |
Collapse
|
40
|
Baillie TA. Approaches to mitigate the risk of serious adverse reactions in covalent drug design. Expert Opin Drug Discov 2020; 16:275-287. [PMID: 33006907 DOI: 10.1080/17460441.2021.1832079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Covalent inhibition of target proteins using high affinity ligands bearing weakly electrophilic warheads is being adopted increasingly as design strategy in the discovery of novel therapeutics, and several covalent drugs have now received regulatory approval for indications in oncology. Experience to date with targeted covalent inhibitors has led to a number of design principles that underlie the safety and efficacy of this increasingly important class of molecules. AREAS COVERED A review is provided of the current status of the covalent drug approach, emphasizing the unique benefits and attendant risks associated with reversible and irreversible binders. Areas of application beyond inhibition of tyrosine kinases are presented, and design considerations to de-risk covalent inhibitors with respect to undesirable off-target effects are discussed. EXPERT OPINION High selectivity for the intended protein target has emerged as a key consideration in mitigating safety risks associated with widespread proteome reactivity. Powerful chemical proteomics-based techniques are now available to assess selectivity in a drug discovery setting. Optimizing pharmacokinetics to capitalize on the intrinsically high potency of covalent drugs should lead to low daily doses and greater safety margins, while minimizing susceptibility to metabolic activation likewise will attenuate the risk of covalent drug toxicity.
Collapse
Affiliation(s)
- Thomas A Baillie
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington Seattle, Seattle, WA, USA
| |
Collapse
|
41
|
Tumbrink HL, Heimsoeth A, Sos ML. The next tier of EGFR resistance mutations in lung cancer. Oncogene 2020; 40:1-11. [PMID: 33060857 DOI: 10.1038/s41388-020-01510-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/15/2020] [Accepted: 10/02/2020] [Indexed: 12/11/2022]
Abstract
EGFR mutations account for the majority of druggable targets in lung adenocarcinoma. Over the past decades the optimization of EGFR inhibitors revolutionized the treatment options for patients suffering from this disease. The pace of this development was largely dictated by the inevitable emergence of resistance mutations during drug treatment. As a result, a rapid understanding of the structural and molecular biology of the individual mutations is the key for the development of next-generation inhibitors. Currently, the field faces an unprecedented number of combinations of activating mutations with distinct resistance mutations in parallel to the approval of osimertinib as a first-line drug for EGFR-mutant lung cancer. In this review, we present a survey of the diverse landscape of EGFR resistance mechanisms with a focus on new insights into on-target EGFR kinase mutations. We discuss array of mutations, their structural effects on the EGFR kinase domain as well as the most promising strategies to overcome the individual resistance profiles found in lung cancer patients.
Collapse
Affiliation(s)
- Hannah L Tumbrink
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne‑Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Alena Heimsoeth
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany.,Department of Translational Genomics, Center of Integrated Oncology Cologne‑Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Martin L Sos
- Molecular Pathology, Institute of Pathology, University Hospital of Cologne, 50937, Cologne, Germany. .,Department of Translational Genomics, Center of Integrated Oncology Cologne‑Bonn, Medical Faculty, University of Cologne, 50931, Cologne, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|