1
|
Rider R, Lantz C, Fan L, Russell DH. Structure and Stabilities of Solution and Gas Phase Protein Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3028-3036. [PMID: 39569632 PMCID: PMC11622221 DOI: 10.1021/jasms.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Collision-induced unfolding (CIU) has provided new levels of understanding of the stabilities and structure(s) for gas phase protein and protein complex ions formed by electrospray ionization (ESI). Variable-temperature (vT-ESI) data provide complementary information about temperature-induced folding/unfolding (TIU) reactions of solution phase ions. Results obtained by using CIU and TIU provide complementary information about stabilities of gas phase versus solution phase ions. Such comparisons may provide the most direct experimental approach to answer a long-standing question from Fred McLafferty: "For how long, under what conditions, and to what extent, can solution structure be retained without solvent?" Answers to this question require greater understanding of the (i) structure(s), stabilities, and dynamics of proteins/protein complexes in solution prior to ESI; (ii) effects of water removal by droplet fission and "freeze-drying" by evaporation of water from the nanodroplet; and (iii) potential reactions and structural changes that may occur as the ions traverse the heated capillary, the final stage in the transition to solvent-free gas phase ions. Here, we employ vT-ESI coupled with ion mobility-mass spectrometry (IM-MS) as a means to provide more detailed answers to the above-mentioned questions. Apo- and metalated-metallothionein-2A (MT), a cysteine-rich metal binding protein, and various proteoforms of transthyretin (TTR), a homotetrameric (56 kDa) retinol and thyroxine transporter protein complex were studied to examine distinct features of CIU and TIU across two different types of protein complexes. The results in this work shed light on the capabilities of CIU, TIU, and average charge state (Zavg) for probing the rugged energy landscape of native proteins and highlights the effects of water and cofactors (metal ions) on the structure and stabilities of proteins and protein complexes.
Collapse
Affiliation(s)
- Robert
L. Rider
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - Carter Lantz
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry Texas
A&M University College
Station, Texas 77843, United States
| |
Collapse
|
2
|
Lantz C, Rider RL, Yun SD, Laganowsky A, Russell DH. Water Plays Key Roles in Stabilities of Wild Type and Mutant Transthyretin Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1854-1864. [PMID: 39057193 PMCID: PMC11311534 DOI: 10.1021/jasms.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Transthyretin (TTR), a 56 kDa homotetramer that is involved in the transport of thyroxine and retinol, has been linked to amyloidosis through disassembly of tetramers to form monomers, dimers, and trimers that then reassemble into higher order oligomers and/or fibrils. Hybrid TTR (hTTR) tetramers are found in heterozygous individuals that express both wild type TTR (wt-TTR) and mutant TTR (mTTR) forms of the protein, and these states display increased rates of amyloidosis. Here we monitor subunit exchange (SUE) reactions involving homomeric and mixed tetramers using high resolution native mass spectrometry (nMS). Our results show evidence that differences in TTR primary structure alter tetramer stabilities, and hTTR products can form spontaneously by SUE reactions. In addition, we find that solution temperature has strong effects on TTR tetramer stabilities and formation of SUE products. Lower temperatures promote formation of hTTR tetramers containing L55P and V30M subunits, whereas small effects on the formation of hTTR tetramers containing F87A and T119M subunits are observed. We hypothesize that the observed temperature dependent stabilities and subsequent SUE behavior are a result of perturbations to the network of "two kinds of water": hydrating and structure stabilizing water molecules (Spyrakis et al. J. Med. Chem. 2017, 60 (16), 6781-6827; Xu et al. Soft Matter 2012, 8, 324-336) that stabilize wt-TTR and mTTR tetramers. The results presented in this work illustrate the utility of high resolution nMS for studies of the structures, stabilities, and dynamics of protein complexes that directly influence SUE reactions.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Robert L. Rider
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Sangho D. Yun
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
3
|
Shepherd SO, Green AW, Resendiz ES, Newton KR, Kurulugama RT, Prell JS. Effects of Nano-Electrospray Ionization Emitter Position on Unintentional In-Source Activation of Peptide and Protein Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:498-507. [PMID: 38374644 PMCID: PMC11315166 DOI: 10.1021/jasms.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Native ion mobility-mass spectrometry (IM-MS) typically introduces protein ions into the gas phase through nano-electrospray ionization (nESI). Many nESI setups have mobile stages for tuning the ion signal and extent of co-solute and salt adduction. However, tuning the position of the emitter capillary in nESI can have unintended downstream consequences for collision-induced unfolding or collision-induced dissociation (CIU/D) experiments. Here, we show that relatively small variations in the nESI emitter position can shift the midpoint (commonly called the "CID50" or "CIU50") potential of CID breakdown curves and CIU transitions by as much as 8 V on commercial instruments. A spatial "map" of the shift in CID50 for the loss of heme from holomyoglobin onto the emitter position on a Waters Synapt G2-Si mass spectrometer shows that emitter positions closer to the instrument inlet can result in significantly greater in-source activation, whereas different effects are found on an Agilent 6545XT instrument for the ions studied. A similar effect is observed for CID of the singly protonated leucine enkephalin peptide and Shiga toxin 1 subunit B homopentamer on the Waters Synapt G2-Si instrument. In-source activation effects on a Waters Synapt G2-Si are also investigated by examining the RMSD between CIU fingerprints acquired at different emitter positions and the shifts in CIU50 for structural transitions of bovine serum albumin and NIST monoclonal antibody.
Collapse
Affiliation(s)
- Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Austin W. Green
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Elizabeth S. Resendiz
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Kenneth R. Newton
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
- 5301 Stevens Creek Blvd, Agilent Technologies, Santa Clara, 95051, CA, USA
| | | | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA, 97403-1252
| |
Collapse
|
4
|
Jordan JS, Williams ER. Laser Heating Nanoelectrospray Emitters for Fast Protein Melting Measurements with Mass Spectrometry. Anal Chem 2022; 94:16894-16900. [DOI: 10.1021/acs.analchem.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Jacob S. Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Walker TE, Shirzadeh M, Sun HM, McCabe JW, Roth A, Moghadamchargari Z, Clemmer DE, Laganowsky A, Rye H, Russell DH. Temperature Regulates Stability, Ligand Binding (Mg 2+ and ATP), and Stoichiometry of GroEL-GroES Complexes. J Am Chem Soc 2022; 144:2667-2678. [PMID: 35107280 PMCID: PMC8939001 DOI: 10.1021/jacs.1c11341] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chaperonins are nanomachines that harness ATP hydrolysis to power and catalyze protein folding, a chemical action that is directly linked to the maintenance of cell function through protein folding/refolding and assembly. GroEL and the GroEL-GroES complex are archetypal examples of such protein folding machines. Here, variable-temperature electrospray ionization (vT-ESI) native mass spectrometry is used to delineate the effects of solution temperature and ATP concentrations on the stabilities of GroEL and GroEL-GroES complexes. The results show clear evidence for destabilization of both GroEL14 and GroES7 at temperatures of 50 and 45 °C, respectively, substantially below the previously reported melting temperature (Tm ∼ 70 °C). This destabilization is accompanied by temperature-dependent reaction products that have previously unreported stoichiometries, viz. GroEL14-GroESy-ATPn, where y = 1, 2, 8 and n = 0, 1, 2, 8, that are also dependent on Mg2+ and ATP concentrations. Variable-temperature native mass spectrometry reveals new insights about the stability of GroEL in response to temperature effects: (i) temperature-dependent ATP binding to GroEL; (ii) effects of temperature as well as Mg2+ and ATP concentrations on the stoichiometry of the GroEL-GroES complex, with Mg2+ showing greater effects compared to ATP; and (iii) a change in the temperature-dependent stoichiometries of the GroEL-GroES complex (GroEL14-GroES7 vs GroEL14-GroES8) between 24 and 40 °C. The similarities between results obtained by using native MS and cryo-EM [Clare et al. An expanded protein folding cage in the GroEL-gp31 complex. J. Mol. Biol. 2006, 358, 905-911; Ranson et al. Allosteric signaling of ATP hydrolysis in GroEL-GroES complexes.Nat. Struct. Mol. Biol. 2006, 13, 147-152] underscore the utility of native MS for investigations of molecular machines as well as identification of key intermediates involved in the chaperonin-assisted protein folding cycle.
Collapse
Affiliation(s)
- Thomas E. Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - He Mirabel Sun
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jacob W. McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Andrew Roth
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Zahra Moghadamchargari
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hays Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
6
|
McCabe JW, Shirzadeh M, Walker TE, Lin CW, Jones BJ, Wysocki VH, Barondeau DP, Clemmer DE, Laganowsky A, Russell DH. Variable-Temperature Electrospray Ionization for Temperature-Dependent Folding/Refolding Reactions of Proteins and Ligand Binding. Anal Chem 2021; 93:6924-6931. [PMID: 33904705 DOI: 10.1021/acs.analchem.1c00870] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stabilities and structure(s) of proteins are directly coupled to their local environment or Gibbs free energy landscape as defined by solvent, temperature, pressure, and concentration. Solution pH, ionic strength, cofactors, chemical chaperones, and osmolytes perturb the chemical potential and induce further changes in structure, stability, and function. At present, no single analytical technique can monitor these effects in a single measurement. Mass spectrometry and ion mobility-mass spectrometry play increasingly essential roles in studies of proteins, protein complexes, and even membrane protein complexes; however, with few exceptions, the effects of the solution temperature on the stability and structure(s) of analytes have not been thoroughly investigated. Here, we describe a new variable-temperature electrospray ionization (vT-ESI) source that utilizes a thermoelectric chip to cool and heat the solution contained within the static ESI emitter. This design allows for solution temperatures to be varied from ∼5 to 98 °C with short equilibration times (<2 min) between precisely controlled temperature changes. The performance of the apparatus for vT-ESI-mass spectrometry and vT-ESI-ion mobility-mass spectrometry studies of cold- and heat-folding reactions is demonstrated using ubiquitin and frataxin. Instrument performance for studies on temperature-dependent ligand binding is shown using the chaperonin GroEL.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Benjamin J Jones
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Vicki H Wysocki
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - David P Barondeau
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
7
|
McCabe JW, Hebert MJ, Shirzadeh M, Mallis CS, Denton JK, Walker TE, Russell DH. THE IMS PARADOX: A PERSPECTIVE ON STRUCTURAL ION MOBILITY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:280-305. [PMID: 32608033 PMCID: PMC7989064 DOI: 10.1002/mas.21642] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/03/2020] [Indexed: 05/06/2023]
Abstract
Studies of large proteins, protein complexes, and membrane protein complexes pose new challenges, most notably the need for increased ion mobility (IM) and mass spectrometry (MS) resolution. This review covers evolutionary developments in IM-MS in the authors' and key collaborators' laboratories with specific focus on developments that enhance the utility of IM-MS for structural analysis. IM-MS measurements are performed on gas phase ions, thus "structural IM-MS" appears paradoxical-do gas phase ions retain their solution phase structure? There is growing evidence to support the notion that solution phase structure(s) can be retained by the gas phase ions. It should not go unnoticed that we use "structures" in this statement because an important feature of IM-MS is the ability to deal with conformationally heterogeneous systems, thus providing a direct measure of conformational entropy. The extension of this work to large proteins and protein complexes has motivated our development of Fourier-transform IM-MS instruments, a strategy first described by Hill and coworkers in 1985 (Anal Chem, 1985, 57, pp. 402-406) that has proved to be a game-changer in our quest to merge drift tube (DT) and ion mobility and the high mass resolution orbitrap MS instruments. DT-IMS is the only method that allows first-principles determinations of rotationally averaged collision cross sections (CSS), which is essential for studies of biomolecules where the conformational diversities of the molecule precludes the use of CCS calibration approaches. The Fourier transform-IM-orbitrap instrument described here also incorporates the full suite of native MS/IM-MS capabilities that are currently employed in the most advanced native MS/IM-MS instruments. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | | | - Joanna K Denton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, TX, 77843
| |
Collapse
|
8
|
Gadkari VV, Ramírez CR, Vallejo DD, Kurulugama RT, Fjeldsted JC, Ruotolo BT. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal Chem 2020; 92:15489-15496. [PMID: 33166123 PMCID: PMC7861131 DOI: 10.1021/acs.analchem.0c03372] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel D Vallejo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ruwan T Kurulugama
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - John C Fjeldsted
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
McCabe JW, Mallis CS, Kocurek KI, Poltash ML, Shirzadeh M, Hebert MJ, Fan L, Walker TE, Zheng X, Jiang T, Dong S, Lin CW, Laganowsky A, Russell DH. First-Principles Collision Cross Section Measurements of Large Proteins and Protein Complexes. Anal Chem 2020; 92:11155-11163. [PMID: 32662991 PMCID: PMC7967297 DOI: 10.1021/acs.analchem.0c01285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rotationally averaged collision cross section (CCS) values for a series of proteins and protein complexes ranging in size from 8.6 to 810 kDa are reported. The CCSs were obtained using a native electrospray ionization drift tube ion mobility-Orbitrap mass spectrometer specifically designed to enhance sensitivity while having high-resolution ion mobility and mass capabilities. Periodic focusing (PF)-drift tube (DT)-ion mobility (IM) provides first-principles determination of the CCS of large biomolecules that can then be used as CCS calibrants. The experimental, first-principles CCS values are compared to previously reported experimentally determined and computationally calculated CCS using projected superposition approximation (PSA), the Ion Mobility Projection Approximation Calculation Tool (IMPACT), and Collidoscope. Experimental CCS values are generally in agreement with previously reported CCSs, with values falling within ∼5.5%. In addition, an ion mobility resolution (CCS centroid divided by CCS fwhm) of ∼60 is obtained for pyruvate kinase (MW ∼ 233 kDa); however, ion mobility resolution for bovine serum albumin (MW ∼ 68 kDa) is less than ∼20, which arises from sample impurities and underscores the importance of sample quality. The high resolution afforded by the ion mobility-Orbitrap mass analyzer provides new opportunities to understand the intricate details of protein complexes such as the impact of post-translational modifications (PTMs), stoichiometry, and conformational changes induced by ligand binding.
Collapse
Affiliation(s)
- Jacob W McCabe
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Christopher S Mallis
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Klaudia I Kocurek
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael L Poltash
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Michael J Hebert
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Thomas E Walker
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Xueyun Zheng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Ting Jiang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Cheng-Wei Lin
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|