1
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
2
|
Liu X, Wang Z, You Z, Wang W, Wang Y, Wu W, Peng Y, Zhang S, Yun Y, Zhang J. Transcriptomic analysis of cell envelope inhibition by prodigiosin in methicillin-resistant Staphylococcus aureus. Front Microbiol 2024; 15:1333526. [PMID: 38318338 PMCID: PMC10839101 DOI: 10.3389/fmicb.2024.1333526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading threat to public health as it is resistant to most currently available antibiotics. Prodigiosin is a secondary metabolite of microorganisms with broad-spectrum antibacterial activity. This study identified a significant antibacterial effect of prodigiosin against MRSA with a minimum inhibitory concentration as low as 2.5 mg/L. The results of scanning electron microscopy, crystal violet staining, and confocal laser scanning microscopy indicated that prodigiosin inhibited biofilm formation in S. aureus USA300, while also destroying the structure of the cell wall and cell membrane, which was confirmed by transmission electron microscopy. At a prodigiosin concentration of 1.25 mg/L, biofilm formation was inhibited by 76.24%, while 2.5 mg/L prodigiosin significantly reduced the vitality of MRSA cells in the biofilm. Furthermore, the transcriptomic results obtained at 1/8 MIC of prodigiosin indicated that 235and 387 genes of S. aureus USA300 were significantly up- and downregulated, respectively. The downregulated genes were related to two-component systems, including the transcriptional regulator LytS, quorum sensing histidine kinases SrrB, NreA and NreB, peptidoglycan biosynthesis enzymes (MurQ and GlmU), iron-sulfur cluster repair protein ScdA, microbial surface components recognizing adaptive matrix molecules, as well as the key arginine synthesis enzymes ArcC and ArgF. The upregulated genes were mainly related to cell wall biosynthesis, as well as two-component systems including vancomycin resistance-associated regulator, lipoteichoic acid biosynthesis related proteins DltD and DltB, as well as the 9 capsular polysaccharide biosynthesis proteins. This study elucidated the molecular mechanisms through which prodigiosin affects the cell envelope of MRSA from the perspectives of cell wall synthesis, cell membrane and biofilm formation, providing new potential targets for the development of antimicrobials for the treatment of MRSA.
Collapse
Affiliation(s)
- Xiaoxia Liu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Zonglin Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China
| | - Zhongyu You
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wei Wang
- Clinical Laboratory of First Hospital of Jiaxing, Jiaxing, China
| | - Yujie Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Suping Zhang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Yinan Yun
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
Hamushan M, Yu J, Jiang F, Wang B, Li M, Hu Y, Wang J, Wu Q, Tang J, Han P, Shen H. Adaptive evolution of the Clf-Sdr subfamily contributes to Staphylococcus aureus musculoskeletal infection: Evidence from comparative genomics. Microbiol Res 2024; 278:127502. [PMID: 37832395 DOI: 10.1016/j.micres.2023.127502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023]
Abstract
Persistent Staphylococcus aureus infections of the musculoskeletal system are a challenge in clinical practice. Although extensive studies on the genotypic changes in S. aureus in soft tissue and blood system infections have been conducted, little is known about how S. aureus adapts to the microenvironment of the musculoskeletal system. Here, we used comparative genomics to analyze the isolates from patients with an S. aureus infection of the musculoskeletal system. We observed that mutations in the Clf-Sdr subfamily proteins frequently occurred during persistent infections. Furthermore, these mutations were primarily located in the non-active site (R region), rather than in the active site (A region). Mechanistically, the clfA/B mutation enhanced the S. aureus biofilm formation ability through the binding to fibrinogen and intercellular adhesion. Complementation studies using the USA300-ΔMSCRAMMs strains clfA and clfB revealed that mutations in both the A and R regions could enhance their corresponding function. The results of protein structure prediction and ligand-binding simulations suggest that these mutations influence the protein structure and ligand binding. In conclusion, our study suggests that the Clf-Sdr subfamily mutations may be one of the mechanisms contributing to persistent S. aureus infections of the musculoskeletal system.
Collapse
Affiliation(s)
- Musha Hamushan
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlong Yu
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Jiang
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Boyong Wang
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingzhang Li
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Hu
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianqiang Wang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiong Wu
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Pei Han
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hao Shen
- Orthopaedic Department, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Risser F, López-Morales J, Nash MA. Adhesive Virulence Factors of Staphylococcus aureus Resist Digestion by Coagulation Proteases Thrombin and Plasmin. ACS BIO & MED CHEM AU 2022; 2:586-599. [PMID: 36573096 PMCID: PMC9782320 DOI: 10.1021/acsbiomedchemau.2c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus (S. aureus) is an invasive and life-threatening pathogen that has undergone extensive coevolution with its mammalian hosts. Its molecular adaptations include elaborate mechanisms for immune escape and hijacking of the coagulation and fibrinolytic pathways. These capabilities are enacted by virulence factors including microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) and the plasminogen-activating enzyme staphylokinase (SAK). Despite the ability of S. aureus to modulate coagulation, until now the sensitivity of S. aureus virulence factors to digestion by proteases of the coagulation system was unknown. Here, we used protein engineering, biophysical assays, and mass spectrometry to study the susceptibility of S. aureus MSCRAMMs to proteolytic digestion by human thrombin, plasmin, and plasmin/SAK complexes. We found that MSCRAMMs were highly resistant to proteolysis, and that SAK binding to plasmin enhanced this resistance. We mapped thrombin, plasmin, and plasmin/SAK cleavage sites of nine MSCRAMMs and performed biophysical, bioinformatic, and stability analysis to understand structural and sequence features common to protease-susceptible sites. Overall, our study offers comprehensive digestion patterns of S. aureus MSCRAMMs by thrombin, plasmin, and plasmin/SAK complexes and paves the way for new studies into this resistance and virulence mechanism.
Collapse
Affiliation(s)
- Fanny Risser
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Joanan López-Morales
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Michael A. Nash
- Institute
of Physical Chemistry, Department of Chemistry, University of Basel, 4058 Basel, Switzerland,Department
of Biosystems Sciences and Engineering, ETH Zurich, 4058 Basel, Switzerland,E-mail:
| |
Collapse
|
5
|
Akhtar M, Naqvi SUAS, Liu Q, Pan H, Ma Z, Kong N, Chen Y, Shi D, Kulyar MFEA, Khan JA, Liu H. Short Chain Fatty Acids (SCFAs) Are the Potential Immunomodulatory Metabolites in Controlling Staphylococcus aureus-Mediated Mastitis. Nutrients 2022; 14:nu14183687. [PMID: 36145063 PMCID: PMC9503071 DOI: 10.3390/nu14183687] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Mastitis is an emerging health concern in animals. An increased incidence of mastitis in dairy cows has been reported in the last few years across the world. It is estimated that up to 20% of cows are suffering from mastitis, causing incompetency in the mucosal immunity and resulting in excessive global economic losses in the dairy industry. Staphylococcus aureus (S. aureus) has been reported as the most common bacterial pathogen of mastitis at clinical and sub-clinical levels. Antibiotics, including penicillin, macrolides, lincomycin, cephalosporins, tetracyclines, chloramphenicol, and methicillin, were used to cure S. aureus-induced mastitis. However, S. aureus is resistant to most antibiotics, and methicillin-resistant S. aureus (MRSA) especially has emerged as a critical health concern. MRSA impairs immune homeostasis leaving the host more susceptible to other infections. Thus, exploring an alternative to antibiotics has become an immediate requirement of the current decade. Short chain fatty acids (SCFAs) are the potent bioactive metabolites produced by host gut microbiota through fermentation and play a crucial role in host/pathogen interaction and could be applied as a potential therapeutic agent against mastitis. The purpose of this review is to summarize the potential mechanism by which SCFAs alleviate mastitis, providing the theoretical reference for the usage of SCFAs in preventing or curing mastitis.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | | | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Fakhar-e-Alam Kulyar
- Department of Clinical Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jawaria Ali Khan
- Department of Veterinary Medicine, Faculty of Veterinary Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
6
|
Wang J, Zhang M, Wang M, Zang J, Zhang X, Hang T. Structural insights into the intermolecular interaction of the adhesin SdrC in the pathogenicity of Staphylococcus aureus. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2021; 77:47-53. [PMID: 33620037 DOI: 10.1107/s2053230x21000741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/21/2021] [Indexed: 11/10/2022]
Abstract
Staphylococcus aureus is an opportunistic disease-causing pathogen that is widely found in the community and on medical equipment. A series of virulence factors secreted by S. aureus can trigger severe diseases such as sepsis, endocarditis and toxic shock, and thus have a great impact on human health. The transformation of S. aureus from a colonization state to a pathogenic state during its life cycle is intimately associated with the initiation of bacterial aggregation and biofilm accumulation. SdrC, an S. aureus surface protein, can act as an adhesin to promote cell attachment and aggregation by an unknown mechanism. Here, structural studies demonstrate that SdrC forms a unique dimer through intermolecular interaction. It is proposed that the dimerization of SdrC enhances the efficiency of bacteria-host attachment and therefore contributes to the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Junchao Wang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Min Zhang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Mingzhu Wang
- Institute of Health Sciences and Technology, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Xuan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, People's Republic of China
| | - Tianrong Hang
- School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
7
|
Cavitt TB, Carlisle JG, Dodds AR, Faulkner RA, Garfield TC, Ghebranious VN, Hendley PR, Henry EB, Holt CJ, Lowe JR, Lowry JA, Oskin DS, Patel PR, Smith D, Wei W. Thermodynamic Surface Analyses to Inform Biofilm Resistance. iScience 2020; 23:101702. [PMID: 33205020 PMCID: PMC7649285 DOI: 10.1016/j.isci.2020.101702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/01/2022] Open
Abstract
Biofilms are the habitat of 95% of bacteria successfully protecting bacteria from many antibiotics. However, inhibiting biofilm formation is difficult in that it is a complex system involving the physical and chemical interaction of both substrate and bacteria. Focusing on the substrate surface and potential interactions with bacteria, we examined both physical and chemical properties of substrates coated with a series of phenyl acrylate monomer derivatives. Atomic force microscopy (AFM) showed smooth surfaces often approximating surgical grade steel. Induced biofilm growth of five separate bacteria on copolymer samples comprising varying concentrations of phenyl acrylate monomer derivatives evidenced differing degrees of biofilm resistance via optical microscopy. Using goniometric surface analyses, the van Oss-Chaudhury-Good equation was solved linear algebraically to determine the surface energy profile of each polymerized phenyl acrylate monomer derivative, two bacteria, and collagen. Based on the microscopy and surface energy profiles, a thermodynamic explanation for biofilm resistance is posited.
Collapse
Affiliation(s)
- T. Brian Cavitt
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jasmine G. Carlisle
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Alexandra R. Dodds
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Rebecca A. Faulkner
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Tyson C. Garfield
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Verena N. Ghebranious
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Phillip R. Hendley
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Emily B. Henry
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Charles J. Holt
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jordan R. Lowe
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Jacob A. Lowry
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - D. Spencer Oskin
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Pooja R. Patel
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| | - Devin Smith
- Abilene Christian University, Department of Chemistry and Biochemistry, ACU Box 28132, Abilene, TX 79699-8132, USA
| | - Wenting Wei
- Lipscomb University, Department of Chemistry and Biochemistry, One University Park Drive, Nashville, TN 37204, USA
| |
Collapse
|
8
|
Jin Y, Yu X, Zhang S, Kong X, Chen W, Luo Q, Zheng B, Xiao Y. Comparative Analysis of Virulence and Toxin Expression of Vancomycin-Intermediate and Vancomycin-Sensitive Staphylococcus aureus Strains. Front Microbiol 2020; 11:596942. [PMID: 33193280 PMCID: PMC7661696 DOI: 10.3389/fmicb.2020.596942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
Previous studies on vancomycin-intermediate Staphylococcus aureus (VISA) have mainly focused on drug resistance, the evolution of differences in virulence between VISA and vancomycin-sensitive S. aureus (VSSA) requires further investigation. To address this issue, in this study, we compared the virulence and toxin profiles of pair groups of VISA and VSSA strains, including a series of vancomycin-resistant induced S. aureus strains—SA0534, SA0534-V8, and SA0534-V16. We established a mouse skin infection model to evaluate the invasive capacity of VISA strains, and found that although mice infected with VISA had smaller-sized abscesses than those infected with VSSA, the abscesses persisted for a longer period (up to 9 days). Infection with VISA strains was associated with a lower mortality rate in Galleria mellonella larvae compared to infection with VSSA strains (≥ 40% vs. ≤ 3% survival at 28 h). Additionally, VISA were more effective in colonizing the nasal passage of mice than VSSA, and in vitro experiments showed that while VISA strains were less virulent they showed enhanced intracellular survival compared to VSSA strains. RNA sequencing of VISA strains revealed significant differences in the expression levels of the agr, hla, cap, spa, clfB, and sbi genes and suggested that platelet activation is only weakly induced by VISA. Collectively, our findings indicate that VISA is less virulent than VSSA but has a greater capacity to colonize human hosts and evade destruction by the host innate immune system, resulting in persistent and chronic S. aureus infection.
Collapse
Affiliation(s)
- Ye Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yu
- Department of Respiratory and Critical Care Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuntian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyang Kong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Chen
- Department of Laboratory Medicine, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|