1
|
Yoshida A, Ohtsuka S, Matsumoto F, Miyagawa T, Okino R, Ikeda Y, Tada N, Gotoh A, Magari M, Hatano N, Morishita R, Satoh A, Sunatsuki Y, Nilsson UJ, Ishikawa T, Tokumitsu H. Development of a novel AAK1 inhibitor via Kinobeads-based screening. Sci Rep 2024; 14:6723. [PMID: 38509168 PMCID: PMC10954696 DOI: 10.1038/s41598-024-57051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
A chemical proteomics approach using Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor-immobilized sepharose (TIM-063-Kinobeads) identified main targets such as CaMKKα/1 and β/2, and potential off-target kinases, including AP2-associated protein kinase 1 (AAK1), as TIM-063 interactants. Because TIM-063 interacted with the AAK1 catalytic domain and inhibited its enzymatic activity moderately (IC50 = 8.51 µM), we attempted to identify potential AAK1 inhibitors from TIM-063-derivatives and found a novel AAK1 inhibitor, TIM-098a (11-amino-2-hydroxy-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one) which is more potent (IC50 = 0.24 µM) than TIM-063 without any inhibitory activity against CaMKK isoforms and a relative AAK1-selectivity among the Numb-associated kinases family. TIM-098a could inhibit AAK1 activity in transfected cultured cells (IC50 = 0.87 µM), indicating cell-membrane permeability of the compound. Overexpression of AAK1 in HeLa cells significantly reduced the number of early endosomes, which was blocked by treatment with 10 µM TIM-098a. These results indicate TIM-063-Kinobeads-based chemical proteomics is efficient for identifying off-target kinases and re-evaluating the kinase inhibitor (TIM-063), leading to the successful development of a novel inhibitory compound (TIM-098a) for AAK1, which could be a molecular probe for AAK1. TIM-098a may be a promising lead compound for a more potent, selective and therapeutically useful AAK1 inhibitor.
Collapse
Affiliation(s)
- Akari Yoshida
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Fumiya Matsumoto
- Department of Science Education, Graduate School of Education, Okayama University, Okayama, 700-8530, Japan
| | - Tomoyuki Miyagawa
- Department of Science Education, Graduate School of Education, Okayama University, Okayama, 700-8530, Japan
| | - Rei Okino
- Department of Science Education, Graduate School of Education, Okayama University, Okayama, 700-8530, Japan
| | - Yumeya Ikeda
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Natsume Tada
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akira Gotoh
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Morishita
- CellFree Sciences Co. Ltd, Matsuyama, 790-8577, Japan
| | - Ayano Satoh
- Organelle Systems Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Yukinari Sunatsuki
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ulf J Nilsson
- Department of Chemistry, Lund University, Box 124, 221 00, Lund, Sweden
| | - Teruhiko Ishikawa
- Department of Science Education, Graduate School of Education, Okayama University, Okayama, 700-8530, Japan.
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
2
|
Ohtsuka S, Miyai Y, Mima H, Magari M, Chiba Y, Suizu F, Sakagami H, Ueno M, Tokumitsu H. Transcriptional, biochemical, and immunohistochemical analyses of CaMKKβ/2 splice variants that co-localize with CaMKIV in spermatids. Cell Calcium 2024; 117:102820. [PMID: 37979343 DOI: 10.1016/j.ceca.2023.102820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) phosphorylates and activates downstream protein kinases, including CaMKI, CaMKIV, PKB/Akt, and AMPK; thus, regulates various Ca2+-dependent physiological and pathophysiological pathways. Further, CaMKKβ/2 in mammalian species comprises multiple alternatively spliced variants; however, their functional differences or redundancy remain unclear. In this study, we aimed to characterize mouse CaMKKβ/2 splice variants (CaMKKβ-3 and β-3x). RT-PCR analyses revealed that mouse CaMKKβ-1, consisting of 17 exons, was predominantly expressed in the brain; whereas, mouse CaMKKβ-3 and β-3x, lacking exon 16 and exons 14/16, respectively, were primarily expressed in peripheral tissues. At the protein level, the CaMKKβ-3 or β-3x variants showed high expression levels in mouse cerebrum and testes. This was consistent with the localization of CaMKKβ-3/-3x in spermatids in seminiferous tubules, but not the localization of CaMKKβ-1. We also observed the co-localization of CaMKKβ-3/-3x with a target kinase, CaMKIV, in elongating spermatids. Biochemical characterization further revealed that CaMKKβ-3 exhibited Ca2+/CaM-induced kinase activity similar to CaMKKβ-1. Conversely, we noted that CaMKKβ-3x impaired Ca2+/CaM-binding ability, but exhibited significantly weak autonomous activity (approximately 500-fold lower than CaMKKβ-1 or β-3) due to the absence of C-terminal of the catalytic domain and a putative residue (Ile478) responsible for the kinase autoinhibition. Nevertheless, CaMKKβ-3x showed the ability to phosphorylate downstream kinases, including CaMKIα, CaMKIV, and AMPKα in transfected cells comparable to CaMKKβ-1 and β-3. Collectively, CaMKKβ-3/-3x were identified as functionally active and could be bona fide CaMKIV-kinases in testes involved in the activation of the CaMKIV cascade in spermatids, resulting in the regulation of spermiogenesis.
Collapse
Affiliation(s)
- Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Yumi Miyai
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hiroyuki Mima
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Yoichi Chiba
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Futoshi Suizu
- Oncology Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, 252-0374, Japan
| | - Masaki Ueno
- Inflammation Pathology, Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, 761-0793, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
3
|
Liu N, Fan Y, Li Y, Zhang Y, Li J, Wang Y, Wang Z, Liu Y, Li Y, Kang Z, Peng Y, Ru Z, Yang M, Feng C, Wang Y, Yang X. OL-FS13 Alleviates Cerebral Ischemia-reperfusion Injury by Inhibiting miR-21-3p Expression. Curr Neuropharmacol 2023; 21:2550-2562. [PMID: 37132110 PMCID: PMC10616927 DOI: 10.2174/1570159x21666230502111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND OL-FS13, a neuroprotective peptide derived from Odorrana livida, can alleviate cerebral ischemia-reperfusion (CI/R) injury, although the specific underlying mechanism remains to be further explored. OBJECTIVE The effect of miR-21-3p on the neural-protective effects of OL-FS13 was examined. METHODS In this study, the multiple genome sequencing analysis, double luciferase experiment, RT-qPCR, and Western blotting were used to explore the mechanism of OL-FS13. RESULTS Showed that over-expression of miR-21-3p against the protective effects of OL-FS13 on oxygen- glucose deprivation/re-oxygenation (OGD/R)-damaged pheochromocytoma (PC12) cells and in CI/R-injured rats. miR-21-3p was then found to target calcium/calmodulin-dependent protein kinase 2 (CAMKK2), and its overexpression inhibited the expression of CAMKK2 and phosphorylation of its downstream adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), thereby inhibiting the therapeutic effects of OL-FS13 on OGD/R and CI/R. Inhibition of CAMKK2 also antagonized up-regulated of nuclear factor erythroid 2-related factor 2 (Nrf-2) by OL-FS13, thereby abolishing the antioxidant activity of the peptide. CONCLUSION Our results showed that OL-FS13 alleviated OGD/R and CI/R by inhibiting miR-21-3p to activate the CAMKK2/AMPK/Nrf-2 axis.
Collapse
Affiliation(s)
- Naixin Liu
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yan Fan
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yingxuan Zhang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jiayi Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhuo Wang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming, Yunnan, 650504, China
| | - Yuansheng Li
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zijian Kang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Peng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zeqiong Ru
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Meifeng Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chengan Feng
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, School of Ethnic Medicine, Yunnan Minzu University, State Ethnic Affairs Commission & Ministry of Education, Kunming, Yunnan, 650504, China
| | - Xinwang Yang
- Department of Anatomy and Histology & Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| |
Collapse
|
4
|
Kaneshige R, Ohtsuka S, Harada Y, Kawamata I, Magari M, Kanayama N, Hatano N, Sakagami H, Tokumitsu H. Substrate recognition by Arg/Pro-rich insert domain in calcium/calmodulin-dependent protein kinase kinase for target protein kinases. FEBS J 2022; 289:5971-5984. [PMID: 35490408 DOI: 10.1111/febs.16467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023]
Abstract
Calcium/calmodulin-dependent protein kinase kinases (CaMKKs) activate CaMKI, CaMKIV, protein kinase B/Akt, and AMP-activated protein kinase (AMPK) by phosphorylating Thr residues in activation loops to mediate various Ca2+ -signaling pathways. Mammalian cells expressing CaMKKα and CaMKKβ lacking Arg/Pro-rich insert domain (RP-domain) sequences showed impaired phosphorylation of AMPKα, CaMKIα, and CaMKIV, whereas the autophosphorylation activities of CaMKK mutants remained intact and were similar to those of wild-type CaMKKs. Liver kinase B1 (LKB1, an AMPK kinase) complexed with STRAD and MO25 and was unable to phosphorylate CaMKIα and CaMKIV; however, mutant LKB1 with the RP-domain sequences of CaMKKα and CaMKKβ inserted between kinase subdomains II and III acquired CaMKIα and CaMKIV phosphorylating activity in vitro and in transfected cultured cells. Furthermore, ionomycin-induced phosphorylation of hemagglutinin (HA)-CaMKIα at Thr177, HA-CaMKIV at Thr196, and HA-AMPKα at Thr172 in transfected cells was significantly suppressed by cotransfection of kinase-dead mutants of CaMKK isoforms, but these dominant-negative effects were abrogated with RP-deletion mutants, suggesting that sequestration of substrate kinases by loss-of-function CaMKK mutants requires the RP-domain. This was confirmed by pulldown experiments that showed that dominant-negative mutants of CaMKKα and CaMKKβ interact with target kinases but not RP-deletion mutants. Taken together, these results clearly indicate that both CaMKK isoforms require the RP-domain to recognize downstream kinases to interact with and phosphorylate Thr residues in their activation loops. Thus, the RP-domain may be a promising target for specific CaMKK inhibitors.
Collapse
Affiliation(s)
- Riku Kaneshige
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Yuhei Harada
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Issei Kawamata
- Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Japan
| |
Collapse
|
5
|
Molecular Mechanisms Underlying Ca2+/Calmodulin-Dependent Protein Kinase Kinase Signal Transduction. Int J Mol Sci 2022; 23:ijms231911025. [PMID: 36232320 PMCID: PMC9570080 DOI: 10.3390/ijms231911025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) is the activating kinase for multiple downstream kinases, including CaM-kinase I (CaMKI), CaM-kinase IV (CaMKIV), protein kinase B (PKB/Akt), and 5′AMP-kinase (AMPK), through the phosphorylation of their activation-loop Thr residues in response to increasing the intracellular Ca2+ concentration, as CaMKK itself is a Ca2+/CaM-dependent enzyme. The CaMKK-mediated kinase cascade plays important roles in a number of Ca2+-dependent pathways, such as neuronal morphogenesis and plasticity, transcriptional activation, autophagy, and metabolic regulation, as well as in pathophysiological pathways, including cancer progression, metabolic syndrome, and mental disorders. This review focuses on the molecular mechanism underlying CaMKK-mediated signal transduction in normal and pathophysiological conditions. We summarize the current knowledge of the structural, functional, and physiological properties of the regulatory kinase, CaMKK, and the development and application of its pharmacological inhibitors.
Collapse
|
6
|
Ohtsuka S, Okumura T, Τabuchi Y, Miyagawa T, Kanayama N, Magari M, Hatano N, Sakagami H, Suizu F, Ishikawa T, Tokumitsu H. Conformation-Dependent Reversible Interaction of Ca 2+/Calmodulin-Dependent Protein Kinase Kinase with an Inhibitor, TIM-063. Biochemistry 2022; 61:545-553. [PMID: 35274528 DOI: 10.1021/acs.biochem.1c00796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase (CaMKK), a Ca2+/CaM-dependent enzyme that phosphorylates and activates multifunctional kinases, including CaMKI, CaMKIV, protein kinase B/Akt, and 5'AMP-activated protein kinase, is involved in various Ca2+-signaling pathways in cells. Recently, we developed an ATP-competitive CaMKK inhibitor, TIM-063 (2-hydroxy-3-nitro-7H-benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one, Ohtsuka et al. Biochemistry 2020, 59, 1701-1710). To gain mechanistic insights into the interaction of CaMKK with TIM-063, we prepared TIM-063-coupled sepharose (TIM-127-sepharose) for association/dissociation analysis of the enzyme/inhibitor complex. CaMKKα/β in transfected COS-7 cells and in mouse brain extracts specifically bound to TIM-127-sepharose and dissociated following the addition of TIM-063 in a manner similar to that of recombinant GST-CaMKKα/β, which could bind to TIM-127-sepharose in a Ca2+/CaM-dependent fashion and dissociate from the sepharose following the addition of TIM-063 in a dose-dependent manner. In contrast to GST-CaMKKα, GST-CaMKKβ was able to weakly bind to TIM-127-sepharose in the presence of EGTA, probably due to the partially active conformation of recombinant GST-CaMKKβ without Ca2+/CaM-binding. These results suggested that the regulatory domain of CaMKKα prevented the inhibitor from interacting with the catalytic domain as the GST-CaMKKα mutant (residues 126-434) lacking the regulatory domain (residues 438-463) interacted with TIM-127-sepharose regardless of the presence or absence of Ca2+/CaM. Furthermore, CaMKKα bound to TIM-127-sepharose in the presence of Ca2+/CaM completely dissociated from TIM-127-sepharose following the addition of excess EGTA. These results indicated that TIM-063 interacted with and inhibited CaMKK in its active state but not in its autoinhibited state and that this interaction is likely reversible, depending on the concentration of intracellular Ca2+.
Collapse
Affiliation(s)
- Satomi Ohtsuka
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Taisei Okumura
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Yuna Τabuchi
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Tomoyuki Miyagawa
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Naoki Kanayama
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Masaki Magari
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Naoya Hatano
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Futoshi Suizu
- Division of Cancer Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Teruhiko Ishikawa
- Department of Science Education, Graduate School of Education, Okayama University, Okayama 700-8530, Japan
| | - Hiroshi Tokumitsu
- Applied Cell Biology, Graduate School of Interdisciplinary Science & Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Kitazawa T, Matsui T, Katsuki S, Goto A, Akagi K, Hatano N, Tokumitsu H, Takeya K, Eto M. A temporal Ca 2+-desensitization of myosin light chain kinase in phasic smooth muscles induced by CaMKKß/PP2A pathways. Am J Physiol Cell Physiol 2021; 321:C549-C558. [PMID: 34106787 DOI: 10.1152/ajpcell.00136.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell signaling pathways regulating myosin regulatory light chain (LC20) phosphorylation contribute to determining contractile responses in smooth muscles. Following excitation and contraction, phasic smooth muscles, such as digestive tract and urinary bladder, undergo a relaxation due to a decline of cellular [Ca2+] and a decreased Ca2+ sensitivity of LC20 phosphorylation, named Ca2+ desensitization. Here, we determined mechanisms underlying the temporal Ca2+ desensitization of LC20 phosphorylation in phasic smooth muscles using permeabilized strips of mouse ileum and urinary bladder. Upon the stimulation with pCa6.0 at 20°C, the contraction and the LC20 phosphorylation peaked within 30 sec and then declined to about 50% of the peak force at 2 min after stimulation. During the relaxation phase after the contraction, the LC20 kinase (MLCK) was inactivated, but no fluctuation in the LC20 phosphatase activity occurred, suggesting that the MLCK inactivation is a cause of the Ca2+-induced Ca2+-desensitization of LC20 phosphorylation. The MLCK inactivation was associated with phosphorylation at the calmodulin binding domain of the kinase. Treatment with antagonists for CaMKKß (STO-609 and TIM-063) attenuated both the phasic response of the contraction and MLCK phosphorylation, whereas neither CaMKII, AMPK nor PAK induced the MLCK inactivation in phasic smooth muscles. Conversely, PP2A inhibition amplified the phasic response. Signaling pathways through CaMKKß and PP2A may contribute to regulating the Ca2+ sensitivity of MLCK and the contractile response of phasic smooth muscles.
Collapse
Affiliation(s)
- Toshio Kitazawa
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia Pennsylvania, United States
| | - Toshiyasu Matsui
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Shuichi Katsuki
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Akira Goto
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kai Akagi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Naoya Hatano
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Hiroshi Tokumitsu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Kosuke Takeya
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Masumi Eto
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia Pennsylvania, United States.,Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| |
Collapse
|
8
|
Lentini Santo D, Petrvalska O, Obsilova V, Ottmann C, Obsil T. Stabilization of Protein-Protein Interactions between CaMKK2 and 14-3-3 by Fusicoccins. ACS Chem Biol 2020; 15:3060-3071. [PMID: 33146997 DOI: 10.1021/acschembio.0c00821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase kinase 2 (CaMKK2) regulates several key physiological and pathophysiological processes, and its dysregulation has been implicated in obesity, diabetes, and cancer. CaMKK2 is inhibited through phosphorylation in a process involving binding to the scaffolding 14-3-3 protein, which maintains CaMKK2 in the phosphorylation-mediated inhibited state. The previously reported structure of the N-terminal CaMKK2 14-3-3-binding motif bound to 14-3-3 suggested that the interaction between 14-3-3 and CaMKK2 could be stabilized by small-molecule compounds. Thus, we investigated the stabilization of interactions between CaMKK2 and 14-3-3γ by Fusicoccin A and other fusicoccanes-diterpene glycosides that bind at the interface between the 14-3-3 ligand binding groove and the 14-3-3 binding motif of the client protein. Our data reveal that two of five tested fusicoccanes considerably increase the binding of phosphopeptide representing the 14-3-3 binding motif of CaMKK2 to 14-3-3γ. Crystal structures of two ternary complexes suggest that the steric contacts between the C-terminal part of the CaMKK2 14-3-3 binding motif and the adjacent fusicoccane molecule are responsible for differences in stabilization potency between the study compounds. Moreover, our data also show that fusicoccanes enhance the binding affinity of phosphorylated full-length CaMKK2 to 14-3-3γ, which in turn slows down CaMKK2 dephosphorylation, thus keeping this protein in its phosphorylation-mediated inhibited state. Therefore, targeting the fusicoccin binding cavity of 14-3-3 by small-molecule compounds may offer an alternative strategy to suppress CaMKK2 activity by stabilizing its phosphorylation-mediated inhibited state.
Collapse
Affiliation(s)
- Domenico Lentini Santo
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Olivia Petrvalska
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Veronika Obsilova
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Christian Ottmann
- Department of Biomedical Engineering, Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
- Department of Structural Biology of Signaling Proteins, Division BIOCEV, Institute of Physiology of the Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| |
Collapse
|