Jiang Y, Li Y, Fu X, Wu Y, Wang R, Zhao M, Mao C, Shi S. Interplay between G protein-coupled receptors and nanotechnology.
Acta Biomater 2023;
169:1-18. [PMID:
37517621 DOI:
10.1016/j.actbio.2023.07.049]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/15/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
G protein-coupled receptors (GPCRs), as the largest family of membrane receptors, actively modulate plasma membrane and endosomal signalling. Importantly, GPCRs are naturally nanosized, and spontaneously formed nanoaggregates of GPCRs (natural nano-GPCRs) may enhance GPCR-related signalling and functions. Although GPCRs are the molecular targets of the majority of marketed drugs, the poor pharmacokinetics and physicochemical properties of GPCR ligands greatly limit their clinical applicability. Nanotechnology, as versatile techniques, can encapsulate GPCR ligands to assemble synthetic nano-GPCRs to overcome their obstacles, robustly elevating drug efficacy and safety. Moreover, endosomal delivery of GPCR ligands by nanoparticles can precisely initiate sustained endosomal signal transduction, while nanotechnology has been widely utilized for isolation, diagnosis, and detection of GPCRs. In turn, due to overexpression of GPCRs on the surface of various types of cells, GPCR ligands can endow nanoparticles with active targeting capacity for specific cells via ligand-receptor binding and mediate receptor-dependent endocytosis of nanoparticles. This significantly enhances the potency of nanoparticle delivery systems. Therefore, emerging evidence has revealed the interplay between GPCRs and nanoparticles, although investigations into their relationship have been inadequate. This review aims to summarize the interaction between GPCRs and nanotechnology for understanding their mutual influences and utilizing their interplay for biomedical applications. It will provide a fundamental platform for developing powerful and safe GPCR-targeted drugs and nanoparticle systems. STATEMENT OF SIGNIFICANCE: GPCRs as molecular targets for the majority of marketed drugs are naturally nanosized, and even spontaneously form nano aggregations (nano-GPCRs). Nanotechnology has also been applied to construct synthetic nano-GPCRs or detect GPCRs, while endosomal delivery of GPCR ligands by nanoparticles can magnify endosomal signalling. Meanwhile, molecular engineering of nanoparticles with GPCRs or their ligands can modulate membrane binding and endocytosis, powerfully improving the efficacy of nanoparticle system. However, there are rare summaries on the interaction between GPCRs and nanoparticles. This review will not only provide a versatile platform for utilizing nanoparticles to modulate or detect GPCRs, but also facilitate better understanding of the designated value of GPCRs for molecular engineering of biomaterials with GPCRs in therapeutical application.
Collapse