1
|
Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. PLoS Biol 2023; 21:e3002156. [PMID: 37315086 DOI: 10.1371/journal.pbio.3002156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
Bak is a critical executor of apoptosis belonging to the Bcl-2 protein family. Bak contains a hydrophobic groove where the BH3 domain of proapoptotic Bcl-2 family members can be accommodated, which initiates its activation. Once activated, Bak undergoes a conformational change to oligomerize, which leads to mitochondrial destabilization and the release of cytochrome c into the cytosol and eventual apoptotic cell death. In this study, we investigated the molecular aspects and functional consequences of the interaction between Bak and peroxisomal testis-specific 1 (Pxt1), a noncanonical BH3-only protein exclusively expressed in the testis. Together with various biochemical approaches, this interaction was verified and analyzed at the atomic level by determining the crystal structure of the Bak-Pxt1 BH3 complex. In-depth biochemical and cellular analyses demonstrated that Pxt1 functions as a Bak-activating proapoptotic factor, and its BH3 domain, which mediates direct intermolecular interaction with Bak, plays a critical role in triggering apoptosis. Therefore, this study provides a molecular basis for the Pxt1-mediated novel pathway for the activation of apoptosis and expands our understanding of the cell death signaling coordinated by diverse BH3 domain-containing proteins.
Collapse
Affiliation(s)
- Dahwan Lim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - So-Hui Choe
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sein Jin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Seulgi Lee
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Ho-Chul Shin
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon, Korea
| | - Doo-Byoung Oh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| | - Jinho Seo
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
2
|
Lai S, Jia J, Cao X, Zhou PK, Gao S. Molecular and Cellular Functions of the Linker Histone H1.2. Front Cell Dev Biol 2022; 9:773195. [PMID: 35087830 PMCID: PMC8786799 DOI: 10.3389/fcell.2021.773195] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/24/2021] [Indexed: 01/14/2023] Open
Abstract
Linker histone H1.2, which belongs to the linker histone family H1, plays a crucial role in the maintenance of the stable higher-order structures of chromatin and nucleosomes. As a critical part of chromatin structure, H1.2 has an important function in regulating chromatin dynamics and participates in multiple other cellular processes as well. Recent work has also shown that linker histone H1.2 regulates the transcription levels of certain target genes and affects different processes as well, such as cancer cell growth and migration, DNA duplication and DNA repair. The present work briefly summarizes the current knowledge of linker histone H1.2 modifications. Further, we also discuss the roles of linker histone H1.2 in the maintenance of genome stability, apoptosis, cell cycle regulation, and its association with disease.
Collapse
Affiliation(s)
- Shuting Lai
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin Jia
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Medicine, University of South China, Hengyang, China
| | - Xiaoyu Cao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China.,School of Life Sciences, Hebei University, Baoding, China
| | - Ping-Kun Zhou
- Institute for Environmental Medicine and Radiation Hygiene, School of Public Health, University of South China, Hengyang, China.,Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shanshan Gao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|