1
|
Drago VN, Devos JM, Blakeley MP, Forsyth VT, Parks JM, Kovalevsky A, Mueser TC. Neutron diffraction from a microgravity-grown crystal reveals the active site hydrogens of the internal aldimine form of tryptophan synthase. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101827. [PMID: 38645802 PMCID: PMC11027755 DOI: 10.1016/j.xcrp.2024.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pyridoxal 5'-phosphate (PLP), the biologically active form of vitamin B6, is an essential cofactor in many biosynthetic pathways. The emergence of PLP-dependent enzymes as drug targets and biocatalysts, such as tryptophan synthase (TS), has underlined the demand to understand PLP-dependent catalysis and reaction specificity. The ability of neutron diffraction to resolve the positions of hydrogen atoms makes it an ideal technique to understand how the electrostatic environment and selective protonation of PLP regulates PLP-dependent activities. Facilitated by microgravity crystallization of TS with the Toledo Crystallization Box, we report the 2.1 Å joint X-ray/neutron (XN) structure of TS with PLP in the internal aldimine form. Positions of hydrogens were directly determined in both the α- and β-active sites, including PLP cofactor. The joint XN structure thus provides insight into the selective protonation of the internal aldimine and the electrostatic environment of TS necessary to understand the overall catalytic mechanism.
Collapse
Affiliation(s)
- Victoria N. Drago
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Juliette M. Devos
- Life Sciences Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
- Partnership for Structural Biology (PSB), 38000 Grenoble, France
| | - Matthew P. Blakeley
- Large Scale Structures Group, Institut Laue–Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - V. Trevor Forsyth
- Faculty of Medicine, Lund University, and LINXS Institute for Advanced Neutron and X-ray Science, Lund, Sweden
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy C. Mueser
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Lead contact
| |
Collapse
|
2
|
Roy A, Karttunen M. A Molecular Dynamics Simulation Study of the Effects of βGln114 Mutation on the Dynamic Behavior of the Catalytic Site of the Tryptophan Synthase. J Chem Inf Model 2024; 64:983-1003. [PMID: 38291608 DOI: 10.1021/acs.jcim.3c01966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
L-tryptophan (l-Trp), a vital amino acid for the survival of various organisms, is synthesized by the enzyme tryptophan synthase (TS) in organisms such as eubacteria, archaebacteria, protista, fungi, and plantae. TS, a pyridoxal 5'-phosphate (PLP)-dependent enzyme, comprises α and β subunits that typically form an α2β2 tetramer. The enzyme's activity is regulated by the conformational switching of its α and β subunits between the open (T state) and closed (R state) conformations. Many microorganisms rely on TS for growth and replication, making the enzyme and the l-Trp biosynthetic pathway potential drug targets. For instance, Mycobacterium tuberculosis, Chlamydiae bacteria, Streptococcus pneumoniae, Francisella tularensis, Salmonella bacteria, and Cryptosporidium parasitic protozoa depend on l-Trp synthesis. Antibiotic-resistant salmonella strains have emerged, underscoring the need for novel drugs targeting the l-Trp biosynthetic pathway, especially for salmonella-related infections. A single amino acid mutation can significantly impact enzyme function, affecting stability, conformational dynamics, and active or allosteric sites. These changes influence interactions, catalytic activity, and protein-ligand/protein-protein interactions. This study focuses on the impact of mutating the βGln114 residue on the catalytic and allosteric sites of TS. Extensive molecular dynamics simulations were conducted on E(PLP), E(AEX1), E(A-A), and E(C3) forms of TS using the WT, βQ114A, and βQ114N versions. The results show that both the βQ114A and βQ114N mutations increase protein backbone root mean square deviation fluctuations, destabilizing all TS forms. Conformational and hydrogen bond analyses suggest the significance of βGln114 drifting away from cofactor/intermediates and forming hydrogen bonds with water molecules necessary for l-Trp biosynthesis. The βQ114A mutation creates a gap between βAla114 and cofactor/intermediates, hindering hydrogen bond formation due to short side chains and disrupting β-sites. Conversely, the βQ114N mutation positions βAsn114 closer to cofactor/intermediates, forming hydrogen bonds with O3 of cofactors/intermediates and nearby water molecules, potentially disrupting the l-Trp biosynthetic mechanism.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| | - Mikko Karttunen
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
- Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A3K7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A5B7, Canada
| |
Collapse
|
3
|
D'Amico RN, Boehr DD. Allostery, engineering and inhibition of tryptophan synthase. Curr Opin Struct Biol 2023; 82:102657. [PMID: 37467527 DOI: 10.1016/j.sbi.2023.102657] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023]
Abstract
The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (βTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and βTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone βTS have also revealed the importance of αTS in modulating the conformational changes in βTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802
| | - David D Boehr
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA, 16802.
| |
Collapse
|
4
|
Phillips RS, Bauer O. Characterization of aminoacrylate intermediates of pyridoxal-5'-phosphate dependent enzymes. Methods Enzymol 2023; 685:199-224. [PMID: 37245902 DOI: 10.1016/bs.mie.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pyridoxal-5'-phosphate (PLP) Schiff's bases of 2-aminoacrylate are intermediates in β-elimination and β-substitution reaction of PLP-dependent enzymes. These enzymes are found in two major families, the α-, or aminotransferase, superfamily, and the β-family. While the α-family enzymes primarily catalyze β-eliminations, the β-family enzymes catalyze both β-elimination and β-substitution reactions. Tyrosine phenol-lyase (TPL), which catalyzes the reversible elimination of phenol from l-tyrosine, is an example of an α-family enzyme. Tryptophan synthase catalyzes the irreversible formation of l-tryptophan from l-serine and indole, and is an example of a β-family enzyme. The identification and characterization of aminoacrylate intermediates in the reactions of both of these enzymes is discussed. The use of UV-visible absorption and fluorescence spectroscopy, X-ray and neutron crystallography, and NMR spectroscopy to identify aminoacrylate intermediates in these and other PLP enzymes is presented.
Collapse
Affiliation(s)
- Robert S Phillips
- Department of Chemistry, University of Georgia, Athens, GA, United States; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States.
| | - Olivia Bauer
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Ghosh RK, Hilario E, Chang CEA, Mueller LJ, Dunn MF. Allosteric regulation of substrate channeling: Salmonella typhimurium tryptophan synthase. Front Mol Biosci 2022; 9:923042. [PMID: 36172042 PMCID: PMC9512447 DOI: 10.3389/fmolb.2022.923042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The regulation of the synthesis of L-tryptophan (L-Trp) in enteric bacteria begins at the level of gene expression where the cellular concentration of L-Trp tightly controls expression of the five enzymes of the Trp operon responsible for the synthesis of L-Trp. Two of these enzymes, trpA and trpB, form an αββα bienzyme complex, designated as tryptophan synthase (TS). TS carries out the last two enzymatic processes comprising the synthesis of L-Trp. The TS α-subunits catalyze the cleavage of 3-indole D-glyceraldehyde 3′-phosphate to indole and D-glyceraldehyde 3-phosphate; the pyridoxal phosphate-requiring β-subunits catalyze a nine-step reaction sequence to replace the L-Ser hydroxyl by indole giving L-Trp and a water molecule. Within αβ dimeric units of the αββα bienzyme complex, the common intermediate indole is channeled from the α site to the β site via an interconnecting 25 Å-long tunnel. The TS system provides an unusual example of allosteric control wherein the structures of the nine different covalent intermediates along the β-reaction catalytic path and substrate binding to the α-site provide the allosteric triggers for switching the αββα system between the open (T) and closed (R) allosteric states. This triggering provides a linkage that couples the allosteric conformational coordinate to the covalent chemical reaction coordinates at the α- and β-sites. This coupling drives the α- and β-sites between T and R conformations to achieve regulation of substrate binding and/or product release, modulation of the α- and β-site catalytic activities, prevention of indole escape from the confines of the active sites and the interconnecting tunnel, and synchronization of the α- and β-site catalytic activities. Here we review recent advances in the understanding of the relationships between structure, function, and allosteric regulation of the complex found in Salmonella typhimurium.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Chia-en A. Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Leonard J. Mueller, ; Michael F. Dunn,
| |
Collapse
|
6
|
Tran JU, Brown BL. Structural Basis for Allostery in PLP-dependent Enzymes. Front Mol Biosci 2022; 9:884281. [PMID: 35547395 PMCID: PMC9081730 DOI: 10.3389/fmolb.2022.884281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP)-dependent enzymes are found ubiquitously in nature and are involved in a variety of biological pathways, from natural product synthesis to amino acid and glucose metabolism. The first structure of a PLP-dependent enzyme was reported over 40 years ago, and since that time, there is a steady wealth of structural and functional information revealed for a wide array of these enzymes. A functional mechanism that is gaining more appreciation due to its relevance in drug design is that of protein allostery, where binding of a protein or ligand at a distal site influences the structure, organization, and function at the active site. Here, we present a review of current structure-based mechanisms of allostery for select members of each PLP-dependent enzyme family. Knowledge of these mechanisms may have a larger potential for identifying key similarities and differences among enzyme families that can eventually be exploited for therapeutic development.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Breann L. Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
7
|
Bosken YK, Ai R, Hilario E, Ghosh RK, Dunn MF, Kan S, Niks D, Zhou H, Ma W, Mueller LJ, Fan L, Chang CA. Discovery of antimicrobial agent targeting tryptophan synthase. Protein Sci 2022; 31:432-442. [PMID: 34767267 PMCID: PMC8820114 DOI: 10.1002/pro.4236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/27/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
Antibiotic resistance is a continually growing challenge in the treatment of various bacterial infections worldwide. New drugs and new drug targets are necessary to curb the threat of infectious diseases caused by multidrug-resistant pathogens. The tryptophan biosynthesis pathway is essential for bacterial growth but is absent in higher animals and humans. Drugs that can inhibit the bacterial biosynthesis of tryptophan offer a new class of antibiotics. In this work, we combined a structure-based strategy using in silico docking screening and molecular dynamics (MD) simulations to identify compounds targeting the α subunit of tryptophan synthase with experimental methods involving the whole-cell minimum inhibitory concentration (MIC) test, solution state NMR, and crystallography to confirm the inhibition of L-tryptophan biosynthesis. Screening 1,800 compounds from the National Cancer Institute Diversity Set I against α subunit revealed 28 compounds for experimental validation; four of the 28 hit compounds showed promising activity in MIC testing. We performed solution state NMR experiments to demonstrate that a one successful inhibitor, 3-amino-3-imino-2-phenyldiazenylpropanamide (Compound 1) binds to the α subunit. We also report a crystal structure of Salmonella enterica serotype Typhimurium tryptophan synthase in complex with Compound 1 which revealed a binding site at the αβ interface of the dimeric enzyme. MD simulations were carried out to examine two binding sites for the compound. Our results show that this small molecule inhibitor could be a promising lead for future drug development.
Collapse
Affiliation(s)
- Yuliana K. Bosken
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Rizi Ai
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Eduardo Hilario
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Rittik K. Ghosh
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Michael F. Dunn
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Shih‐Hsin Kan
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia,Present address:
CHOC Research InstituteOrangeCalifornia
| | - Dimitri Niks
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Huanbin Zhou
- Department of Microbiology and Plant PathologyUniversity of California at RiversideRiversideCalifornia,Present address:
Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Wenbo Ma
- Department of Microbiology and Plant PathologyUniversity of California at RiversideRiversideCalifornia,Present address:
The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Leonard J. Mueller
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| | - Li Fan
- Department of BiochemistryUniversity of California at RiversideRiversideCalifornia
| | - Chia‐En A. Chang
- Department of ChemistryUniversity of California at RiversideRiversideCalifornia
| |
Collapse
|
8
|
Ghosh RK, Hilario E, Liu V, Wang Y, Niks D, Holmes JB, Sakhrani VV, Mueller LJ, Dunn MF. Mutation of βGln114 to Ala Alters the Stabilities of Allosteric States in Tryptophan Synthase Catalysis. Biochemistry 2021; 60:3173-3186. [PMID: 34595921 PMCID: PMC9122093 DOI: 10.1021/acs.biochem.1c00383] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tryptophan synthase (TS) bienzyme complexes found in bacteria, yeasts, and molds are pyridoxal 5'-phosphate (PLP)-requiring enzymes that synthesize l-Trp. In the TS catalytic cycle, switching between the open and closed states of the α- and β-subunits via allosteric interactions is key to the efficient conversion of 3-indole-d-glycerol-3'-phosphate and l-Ser to l-Trp. In this process, the roles played by β-site residues proximal to the PLP cofactor have not yet been fully established. βGln114 is one such residue. To explore the roles played by βQ114, we conducted a detailed investigation of the βQ114A mutation on the structure and function of tryptophan synthase. Initial steady-state kinetic and static ultraviolet-visible spectroscopic analyses showed the Q to A mutation impairs catalytic activity and alters the stabilities of intermediates in the β-reaction. Therefore, we conducted X-ray structural and solid-state nuclear magnetic resonance spectroscopic studies to compare the wild-type and βQ114A mutant enzymes. These comparisons establish that the protein structural changes are limited to the Gln to Ala replacement, the loss of hydrogen bonds among the side chains of βGln114, βAsn145, and βArg148, and the inclusion of waters in the cavity created by substitution of the smaller Ala side chain. Because the conformations of the open and closed allosteric states are not changed by the mutation, we hypothesize that the altered properties arise from the lost hydrogen bonds that alter the relative stabilities of the open (βT state) and closed (βR state) conformations of the β-subunit and consequently alter the distribution of intermediates along the β-subunit catalytic path.
Collapse
Affiliation(s)
- Rittik K. Ghosh
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| | - Eduardo Hilario
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| | - Jacob B. Holmes
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Varun V. Sakhrani
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, California, 92521 USA
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, California, 92521 USA
| |
Collapse
|