1
|
Lee KB, Ge X. Generation of Protease Inhibitory Antibodies by Functional In Vivo Selection. Methods Mol Biol 2024; 2747:243-256. [PMID: 38038945 PMCID: PMC10732120 DOI: 10.1007/978-1-0716-3589-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Targeting dysregulated protease expression and/or abnormal substrate proteolysis, highly selective inhibition of pathogenic proteases by monoclonal antibodies (mAbs) presents an attractive therapeutic approach for the treatment of diseases including cancer. Herein, we report a functional selection method for protease inhibitory mAbs by periplasmic co-expression of three recombinant proteins-a protease of interest, an antibody Fab library, and a modified β-lactamase TEM-1. We validate this approach by isolation of highly selective and potent mAbs inhibiting human matrix metalloproteinase 9 (MMP9).
Collapse
Affiliation(s)
- Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Choe H, Antee T, Ge X. Substrate derived sequences act as subsite-blocking motifs in protease inhibitory antibodies. Protein Sci 2023; 32:e4691. [PMID: 37278099 PMCID: PMC10285753 DOI: 10.1002/pro.4691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Proteases are involved in many physiologic processes, and dysregulated proteolysis is basis of a variety of diseases. Specific inhibition of pathogenetic proteases via monoclonal antibodies therefore holds significant therapeutic promise. Inspired by the competitive mechanism utilized by many naturally occurring and man-made protease inhibitors, we hypothesized that substrate-like peptide sequences can act as protease subsite blocking motifs if they occupy only one side of the reaction center. To test this hypothesis, a degenerate codon library representing MMP-14 substrate profiles at P1-P5' positions was constructed in the context of an anti-MMP-14 Fab by replacing its inhibitory motif in CDR-H3 with MMP-14 substrate repertoires. After selection for MMP-14 active-site binders by phage panning, results indicated that diverse substrate-like sequences conferring antibodies inhibitory potencies were enriched in the isolated clones. Optimal residues at each of P1-P5' positions were then identified, and the corresponding mutation combinations showed improved characteristics as effective inhibitors of MMP-14. Insights on efficient library designs for inhibitory peptide motifs were further discussed. Overall, this study proved the concept that substrate-derived sequences were able to behave as the inhibitory motifs in protease-specific antibodies. With accumulating data available on protease substrate profiles, we expect the approach described here can be broadly applied to facilitate the generation of antibody inhibitors targeting biomedically important proteases.
Collapse
Affiliation(s)
- Hyunjun Choe
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
- Present address:
Arrowhead PharmaceuticalsMadisonWIUSA
| | - Tara Antee
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| | - Xin Ge
- Institute of Molecular MedicineUniversity of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| |
Collapse
|
3
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
4
|
Guo X, Cao J, Cai JP, Wu J, Huang J, Asthana P, Wong SKK, Ye ZW, Gurung S, Zhang Y, Wang S, Wang Z, Ge X, Kwan HY, Lyu A, Chan KM, Wong N, Huang J, Zhou Z, Bian ZX, Yuan S, Wong HLX. Control of SARS-CoV-2 infection by MT1-MMP-mediated shedding of ACE2. Nat Commun 2022; 13:7907. [PMID: 36564389 PMCID: PMC9780620 DOI: 10.1038/s41467-022-35590-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Angiotensin-converting enzyme 2 (ACE2) is an entry receptor for SARS-CoV-2. The full-length membrane form of ACE2 (memACE2) undergoes ectodomain shedding to generate a shed soluble form (solACE2) that mediates SARS-CoV-2 entry via receptor-mediated endocytosis. Currently, it is not known how the physiological regulation of ACE2 shedding contributes to the etiology of COVID-19 in vivo. The present study identifies Membrane-type 1 Matrix Metalloproteinase (MT1-MMP) as a critical host protease for solACE2-mediated SARS-CoV-2 infection. SARS-CoV-2 infection leads to increased activation of MT1-MMP that is colocalized with ACE2 in human lung epithelium. Mechanistically, MT1-MMP directly cleaves memACE2 at M706-S to release solACE218-706 that binds to the SARS-CoV-2 spike proteins (S), thus facilitating cell entry of SARS-CoV-2. Human solACE218-706 enables SARS-CoV-2 infection in both non-permissive cells and naturally insusceptible C57BL/6 mice. Inhibition of MT1-MMP activities suppresses solACE2-directed entry of SARS-CoV-2 in human organoids and aged mice. Both solACE2 and circulating MT1-MMP are positively correlated in plasma of aged mice and humans. Our findings provide in vivo evidence demonstrating the contribution of ACE2 shedding to the etiology of COVID-19.
Collapse
Affiliation(s)
- Xuanming Guo
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jianli Cao
- grid.194645.b0000000121742757Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jian-Piao Cai
- grid.194645.b0000000121742757State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiayan Wu
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiangang Huang
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Pallavi Asthana
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sheung Kin Ken Wong
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zi-Wei Ye
- grid.194645.b0000000121742757Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Susma Gurung
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yijing Zhang
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Sheng Wang
- grid.470187.dRespiratory Department, Jinhua Guangfu Hospital, Jinhua, China
| | - Zening Wang
- grid.267308.80000 0000 9206 2401Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Xin Ge
- grid.267308.80000 0000 9206 2401Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Hiu Yee Kwan
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Aiping Lyu
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Kui Ming Chan
- grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Nathalie Wong
- grid.415197.f0000 0004 1764 7206Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, N.T., Hong Kong SAR, China
| | - Jiandong Huang
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhongjun Zhou
- grid.194645.b0000000121742757School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhao-Xiang Bian
- grid.221309.b0000 0004 1764 5980Centre for Chinese Herbal Medicine Drug Development Limited, Hong Kong Baptist University, Hong Kong SAR, China
| | - Shuofeng Yuan
- grid.194645.b0000000121742757State Key Laboratory of Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- grid.221309.b0000 0004 1764 5980School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
5
|
Human Antibody Domains and Fragments Targeting Neutrophil Elastase as Candidate Therapeutics for Cancer and Inflammation-Related Diseases. Int J Mol Sci 2021; 22:ijms222011136. [PMID: 34681796 PMCID: PMC8539514 DOI: 10.3390/ijms222011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/10/2021] [Accepted: 10/12/2021] [Indexed: 11/25/2022] Open
Abstract
Neutrophil elastase (NE) is a serine protease released during neutrophil maturation. High levels of NE are related to lung tissue damage and poor prognosis in cancer; thus, NE is a potential target for therapeutic immunotherapy for multiple lung diseases and cancers. Here, we isolate and characterize two high-affinity, specific, and noncompetitive anti-NE antibodies Fab 1C10 and VH 1D1.43 from two large phage-displayed human Fab and VH libraries. After fusion with human IgG1 Fc, both of them (VH-Fc 1D1.43 and IgG1 1C10) inhibit NE enzymatic activity with VH-Fc 1D1.43 showing comparable inhibitory effects to that of the small molecule NE inhibitor SPCK and IgG1 1C10 exhibiting even higher (2.6-fold) activity than SPCK. Their epitopes, as mapped by peptide arrays combined with structural modeling, indicate different mechanisms for blocking NE activity. Both VH-Fc and IgG1 antibodies block NE uptake by cancer cells and fibroblast differentiation. VH-Fc 1D1.43 and IgG1 1C10 are promising for the antibody-based immunotherapy of cancer and inflammatory diseases.
Collapse
|