1
|
Palacios-Ortega J, Amigot-Sánchez R, García-Montoya C, Gorše A, Heras-Márquez D, García-Linares S, Martínez-del-Pozo Á, Slotte JP. Determination of the boundary lipids of sticholysins using tryptophan quenching. Sci Rep 2022; 12:17328. [PMID: 36243747 PMCID: PMC9569322 DOI: 10.1038/s41598-022-21750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Sticholysins are α-pore-forming toxins produced by the sea-anemone Stichodactyla helianthus. These toxins exert their activity by forming pores on sphingomyelin-containing membranes. Recognition of sphingomyelin by sticholysins is required to start the process of pore formation. Sphingomyelin recognition is coupled with membrane binding and followed by membrane penetration and oligomerization. Many features of these processes are known. However, the extent of contact with each of the different kinds of lipids present in the membrane has received little attention. To delve into this question, we have used a phosphatidylcholine analogue labeled at one of its acyl chains with a doxyl moiety, a known quencher of tryptophan emission. Here we present evidence for the contact of sticholysins with phosphatidylcholine lipids in the sticholysin oligomer, and for how each sticholysin isotoxin is affected differently by the inclusion of cholesterol in the membrane. Furthermore, using phosphatidylcholine analogs that were labeled at different positions of their structure (acyl chains and headgroup) in combination with a variety of sticholysin mutants, we also investigated the depth of the tryptophan residues of sticholysins in the bilayer. Our results indicate that the position of the tryptophan residues relative to the membrane normal is deeper when cholesterol is absent from the membrane.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland ,grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Rafael Amigot-Sánchez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Carmen García-Montoya
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Ana Gorše
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - J. Peter Slotte
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
2
|
Sea Anemones, Actinoporins, and Cholesterol. Int J Mol Sci 2022; 23:ijms23158771. [PMID: 35955905 PMCID: PMC9369217 DOI: 10.3390/ijms23158771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Spanish or Spanish-speaking scientists represent a remarkably populated group within the scientific community studying pore-forming proteins. Some of these scientists, ourselves included, focus on the study of actinoporins, a fascinating group of metamorphic pore-forming proteins produced within the venom of several sea anemones. These toxic proteins can spontaneously transit from a water-soluble fold to an integral membrane ensemble because they specifically recognize sphingomyelin in the membrane. Once they bind to the bilayer, they subsequently oligomerize into a pore that triggers cell-death by osmotic shock. In addition to sphingomyelin, some actinoporins are especially sensible to some other membrane components such as cholesterol. Our group from Universidad Complutense of Madrid has focused greatly on the role played by sterols in this water–membrane transition, a question which still remains only partially solved and constitutes the main core of the article below.
Collapse
|
3
|
García‐Linares S, Amigot‐Sánchez R, García‐Montoya C, Heras‐Márquez D, Alfonso C, Luque‐Ortega JR, Gavilanes JG, Martínez‐del‐Pozo Á, Palacios‐Ortega J. Sticholysin I‐II oligomerization in the absence of membranes. FEBS Lett 2022; 596:1029-1036. [DOI: 10.1002/1873-3468.14326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sara García‐Linares
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Rafael Amigot‐Sánchez
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Carmen García‐Montoya
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Diego Heras‐Márquez
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Lab Centro de Investigaciones Biológicas Margarita Salas (CSIC) C. Ramiro de Maeztu 9 28040 Madrid Spain
| | - Juan Román Luque‐Ortega
- Molecular Interactions Facility Centro de Investigaciones Biológicas Margarita Salas (CSIC) C. Ramiro de Maeztu 9 28040 Madrid Spain
| | - José G. Gavilanes
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
| | | | - Juan Palacios‐Ortega
- Departamento de Bioquímica y Biología Molecular Universidad Complutense Madrid Spain
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| |
Collapse
|
4
|
Daskalov A, Glass NL. Gasdermin and Gasdermin-Like Pore-Forming Proteins in Invertebrates, Fungi and Bacteria. J Mol Biol 2021; 434:167273. [PMID: 34599942 DOI: 10.1016/j.jmb.2021.167273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
The gasdermin family of pore-forming proteins (PFPs) has recently emerged as key molecular players controlling immune-related cell death in mammals. Characterized mammalian gasdermins are activated through proteolytic cleavage by caspases or serine proteases, which remove an inhibitory carboxy-terminal domain, allowing the pore-formation process. Processed gasdermins form transmembrane pores permeabilizing the plasma membrane, which often results in lytic and inflammatory cell death. While the gasdermin-dependent cell death (pyroptosis) has been predominantly characterized in mammals, it now has become clear that gasdermins also control cell death in early vertebrates (teleost fish) and invertebrate animals such as corals (Cnidaria). Moreover, gasdermins and gasdermin-like proteins have been identified and characterized in taxa outside of animals, notably Fungi and Bacteria. Fungal and bacterial gasdermins share many features with mammalian gasdermins including their mode of activation through proteolysis. It has been shown that in some cases the proteolytic activation is executed by evolutionarily related proteases acting downstream of proteins resembling immune receptors controlling pyroptosis in mammals. Overall, these findings establish gasdermins and gasdermin-regulated cell death as an extremely ancient mechanism of cellular suicide and build towards an understanding of the evolution of regulated cell death in the context of immunology. Here, we review the broader gasdermin family, focusing on recent discoveries in invertebrates, fungi and bacteria.
Collapse
Affiliation(s)
- Asen Daskalov
- Institut de Biochimie et Génétique Cellulaires, University of Bordeaux, France.
| | - N Louise Glass
- The Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720-3102, United States
| |
Collapse
|
5
|
Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021; 13:toxins13080567. [PMID: 34437438 PMCID: PMC8402351 DOI: 10.3390/toxins13080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs’ intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.
Collapse
Affiliation(s)
- Carlos Alvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Correspondence:
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Sheila Cabezas
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Javier Alvarado-Mesén
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40101, Costa Rica
| | - Rady Laborde
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Fabiola Pazos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-strasse 26, 50931 Cologne, Germany
| | - Ana María Hernández
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana CP 11600, Cuba;
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| |
Collapse
|
6
|
Mondal AK, Chattopadhyay K. Structures and functions of the membrane-damaging pore-forming proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:241-288. [PMID: 35034720 DOI: 10.1016/bs.apcsb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pore-forming proteins (PFPs) of the diverse life forms have emerged as the potent cell-killing entities owing to their specialized membrane-damaging properties. PFPs have the unique ability to perforate the plasma membranes of their target cells, and they exert this functionality by creating oligomeric pores in the membrane lipid bilayer. Pathogenic bacteria employ PFPs as toxins to execute their virulence mechanisms, whereas in the higher vertebrates PFPs are deployed as the part of the immune system and to generate inflammatory responses. PFPs are the unique dimorphic proteins that are generally synthesized as water-soluble molecules, and transform into membrane-inserted oligomeric pore assemblies upon interacting with the target membranes. In spite of sharing very little sequence similarity, PFPs from diverse organisms display incredible structural similarity. Yet, at the same time, structure-function mechanisms of the PFPs document remarkable versatility. Such notions establish PFPs as the fascinating model system to explore variety of unsolved issues pertaining to the structure-function paradigm of the proteins that interact and act in the membrane environment. In this article, we discuss our current understanding regarding the structural basis of the pore-forming functions of the diverse class of PFPs. We attempt to highlight the similarities and differences in their structures, membrane pore-formation mechanisms, and their implications for the various biological processes, ranging from the bacterial virulence mechanisms to the inflammatory immune response generation in the higher animals.
Collapse
Affiliation(s)
- Anish Kumar Mondal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Kausik Chattopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
7
|
Cardoso S, Berberan-Santos MN. Reversible Electronic Energy Transfer (Homo-FRET) in Cyclic Molecular and Supramolecular Systems: Fluorescence Anisotropy Decays for the Isotropic Interaction. J Phys Chem A 2021; 125:8476-8481. [PMID: 34286990 DOI: 10.1021/acs.jpca.1c04975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reversible electronic energy transfer (homo-FRET) in cyclic multichromophoric systems is studied for sets of n identical fluorophores arranged in regular polygons (triangle, square, pentagon, etc.). A general analytic expression for the anisotropy decay is obtained for a regular polygon of any order, under the assumptions of isotropic interaction and nearest-neighbor FRET. A graphical way of connecting the decay form and polygon geometry based on the Frost circle is also presented. The consequences of the relaxation of these assumptions on the anisotropy decay are also discussed and analyzed in detail for the heptagon.
Collapse
Affiliation(s)
- Sofia Cardoso
- Physics Department, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Mario N Berberan-Santos
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.,Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
8
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Heras-Márquez D, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Structural foundations of sticholysin functionality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140696. [PMID: 34246789 DOI: 10.1016/j.bbapap.2021.140696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a β-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Esperanza Rivera-de-Torre
- Department of Biochemistry and Biotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| |
Collapse
|