1
|
Jones AA, Snow CD. Porous protein crystals: synthesis and applications. Chem Commun (Camb) 2024; 60:5790-5803. [PMID: 38756076 DOI: 10.1039/d4cc00183d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Large-pore protein crystals (LPCs) are an emerging class of biomaterials. The inherent diversity of proteins translates to a diversity of crystal lattice structures, many of which display large pores and solvent channels. These pores can, in turn, be functionalized via directed evolution and rational redesign based on the known crystal structures. LPCs possess extremely high solvent content, as well as extremely high surface area to volume ratios. Because of these characteristics, LPCs continue to be explored in diverse applications including catalysis, targeted therapeutic delivery, templating of nanostructures, structural biology. This Feature review article will describe several of the existing platforms in detail, with particular focus on LPC synthesis approaches and reported applications.
Collapse
Affiliation(s)
- Alec Arthur Jones
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
| | - Christopher D Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1301, USA
| |
Collapse
|
2
|
Pan JA, Skripka A, Lee C, Qi X, Pham AL, Woods JJ, Abergel RJ, Schuck PJ, Cohen BE, Chan EM. Ligand-Assisted Direct Lithography of Upconverting and Avalanching Nanoparticles for Nonlinear Photonics. J Am Chem Soc 2024; 146:7487-7497. [PMID: 38466925 DOI: 10.1021/jacs.3c12850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size. Here, we explore direct patterning chemistries for 6-18 nm Tm3+-, Yb3+/Tm3+-, and Yb3+/Er3+-based UCNPs using ligands that form either new ionic linkages or covalent bonds between UCNPs under ultraviolet (UV), electron-beam (e-beam), and near-infrared (NIR) exposure. We study the effect of UCNP size on these patterning approaches and find that 6 nm UCNPs can be patterned with compact ionic-based ligands. In contrast, patterning larger UCNPs requires long-chain, cross-linkable ligands that provide sufficient interparticle spacing to prevent irreversible aggregation upon film casting. Compared to approaches that use a cross-linkable liquid monomer, our patterning method limits the cross-linking reaction to the ligands bound on UCNPs deposited as a thin film. This highly localized photo-/electron-initiated chemistry enables the fabrication of densely packed UCNP patterns with high resolutions (∼1 μm with UV and NIR exposure; <100 nm with e-beam). Our upconversion NIR lithography approach demonstrates the potential to use inexpensive continuous-wave lasers for high-resolution 2D and 3D lithography of colloidal materials. The deposited UCNP patterns retain their upconverting, avalanching, and photoswitching behaviors, which can be exploited in patterned optical devices for next-generation UCNP applications.
Collapse
Affiliation(s)
- Jia-Ahn Pan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Artiom Skripka
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Xiao Qi
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anne L Pham
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering and Chemistry, University of California, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering and Chemistry, University of California, Berkeley, California 94720, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Yu X, Li H, Tian W, Ge Y, Wang T, Qi Z, Liu J. Single-layer semiconductor-decorated flexible 2D protein nanosheets by engineered anchoring for efficient photocatalytic hydrogen production. Int J Biol Macromol 2024; 261:129819. [PMID: 38290631 DOI: 10.1016/j.ijbiomac.2024.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
Protein self-assembly can be accurately manipulated to form ordered nanostructures through various supramolecular forces. This strategy is expected to make significant breakthroughs in the field of new biomimetic functional materials. Specifically, the construction of photocatalytic systems on two-dimensional (2D) flexible protein nanosheets meets a great challenge. We introduce a synthetic methodology for creating single-layer semiconductor-decorated protein 2D materials under mild conditions with enhanced light-driven hydrogen production. This approach employs a bioengineered green fluorescent protein (E4P) with the addition of a Cd-binding peptide, enabling precise control of the assembly of CdS quantum dots (QDs) on the protein's surface. Consequently, we obtained 4.3 nm-thin single-layer 2D protein nanosheets with substantial surface areas ideal for accommodating CdS QDs. By orthogonal incorporation of metal-binding peptides and supramolecular coordination, significantly enhancing the overall photocatalytic efficiency. Our findings demonstrate the potential for stable and efficient hydrogen production, highlighting the adaptability and biocompatibility of protein scaffolds for photocatalysis.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hui Li
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingting Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
4
|
Fully Integrated Ultra-thin Intraoperative Micro-imager for Cancer Detection Using Upconverting Nanoparticles. Mol Imaging Biol 2023; 25:168-179. [PMID: 35312938 PMCID: PMC9970948 DOI: 10.1007/s11307-022-01710-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Intraoperative detection and removal of microscopic residual disease (MRD) remain critical to the outcome of cancer surgeries. Today's minimally invasive surgical procedures require miniaturization and surgical integration of highly sensitive imagers to seamlessly integrate into the modern clinical workflow. However, current intraoperative imagers remain cumbersome and still heavily dependent on large lenses and rigid filters, precluding further miniaturization and integration into surgical tools. PROCEDURES We have successfully engineered a chip-scale intraoperative micro-imager array-without optical filters or lenses-integrated with lanthanide-based alloyed upconverting nanoparticles (aUCNPs) to achieve tissue imaging using a single micro-chip. This imaging platform is able to leverage the unique optical properties of aUCNPs (long luminescent lifetime, high-efficiency upconversion, no photobleaching) by utilizing a time-resolved imaging method to acquire images using a 36-by-80-pixel, 2.3 mm [Formula: see text] 4.8 mm silicon-based electronic imager micro-chip, that is, less than 100-µm thin. Each pixel incorporates a novel architecture enabling automated background measurement and cancellation. We have validated the performance, spatial resolution, and the background cancellation scheme of the imaging platform, using resolution test targets and mouse prostate tumor sample intratumorally injected with aUCNPs. To demonstrate the ability to image MRD, or tumor margins, we evaluated the imaging platform in visualizing a single-cell thin section of the injected prostate tumor sample. RESULTS Tested on USAF resolution targets, the imager is able to achieve a resolution of 71 µm. We have also demonstrated successful background cancellation, achieving a signal-to-background ratio of 8 when performing ex vivo imaging on aUCNP-injected prostate tumor sample, improved from originally 0.4. The performance of the imaging platform on single-cell layer sections was also evaluated and the sensor achieved a signal-to-background ratio of 4.3 in resolving cell clusters with sizes as low as 200 cells. CONCLUSION The imaging system proposed here is a scalable chip-scale ultra-thin alternative for bulky conventional intraoperative imagers. Its novel pixel architecture and background correction scheme enable visualization of microscopic-scale residual disease while remaining completely free of lenses and filters, achieving an ultra-miniaturized form factor-critical for intraoperative settings.
Collapse
|
5
|
Truchado DA, Rincón S, Zurita L, Sánchez F, Ponz F. Isopeptide Bonding In Planta Allows Functionalization of Elongated Flexuous Proteinaceous Viral Nanoparticles, including Non-Viable Constructs by Other Means. Viruses 2023; 15:375. [PMID: 36851591 PMCID: PMC9964325 DOI: 10.3390/v15020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Plant viral nanoparticles (VNPs) have become an attractive platform for the development of novel nanotools in the last years because of their safety, inexpensive production, and straightforward functionalization. Turnip mosaic virus (TuMV) is one example of a plant-based VNP used as a nanobiotechnological platform either as virions or as virus-like particles (VLPs). Their functionalization mainly consists of coating their surface with the molecules of interest via chemical conjugation or genetic fusion. However, because of their limitations, these two methods sometimes result in non-viable constructs. In this paper, we applied the SpyTag/SpyCatcher technology as an alternative for the functionalization of TuMV VLPs with peptides and proteins. We chose as molecules of interest the green fluorescent protein (GFP) because of its good traceability, as well as the vasoactive intestinal peptide (VIP), given the previous unsuccessful attempts to functionalize TuMV VNPs by other methods. The successful conjugation of VLPs to GFP and VIP using SpyTag/SpyCatcher was confirmed through Western blot and electron microscopy. Moreover, the isopeptide bond between SpyTag and SpyCatcher occurred in vivo in co-agroinfiltrated Nicotiana benthamiana plants. These results demonstrated that SpyTag/SpyCatcher improves TuMV functionalization compared with previous approaches, thus implying the expansion of the application of the technology to elongated flexuous VNPs.
Collapse
Affiliation(s)
| | | | | | | | - Fernando Ponz
- Centro de Biotecnología y Genómica de Plantas (CBGP) (UPM-INIA/CSIC), Autopista M40, km 38, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
6
|
Vaidya AJ, Solomon KV. Surface Functionalization of Rod-Shaped Viral Particles for Biomedical Applications. ACS APPLIED BIO MATERIALS 2022; 5:1980-1989. [PMID: 35148077 DOI: 10.1021/acsabm.1c01204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While synthetic nanoparticles play a very important role in modern medicine, concerns regarding toxicity, sustainability, stability, and dispersity are drawing increasing attention to naturally derived alternatives. Rod-shaped plant viruses and virus-like particles (VLPs) are biological nanoparticles with powerful advantages such as biocompatibility, tunable size and aspect ratio, monodispersity, and multivalency. These properties facilitate controlled biodistribution and tissue targeting for powerful applications in medicine. Ongoing research efforts focus on functionalizing or otherwise engineering these structures for a myriad of applications, including vaccines, imaging, and drug delivery. These include chemical and biological strategies for conjugation to small molecule chemical dyes, drugs, metals, polymers, peptides, proteins, carbohydrates, and nucleic acids. Many strategies are available and vary greatly in efficiency, modularity, selectivity, and simplicity. This review provides a comprehensive summary of VLP functionalization approaches while highlighting biomedically relevant examples. Limitations of current strategies and opportunities for further advancement will also be discussed.
Collapse
Affiliation(s)
- Akash J Vaidya
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| | - Kevin V Solomon
- Department of Chemical & Biomolecular Engineering, University of Delaware, 150 Academy St, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Pallares RM, Charrier M, Tejedor-Sanz S, Li D, Ashby PD, Ajo-Franklin CM, Ralston CY, Abergel RJ. Precision Engineering of 2D Protein Layers as Chelating Biogenic Scaffolds for Selective Recovery of Rare-Earth Elements. J Am Chem Soc 2022; 144:854-861. [PMID: 34985894 DOI: 10.1021/jacs.1c10802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rare-earth elements, which include the lanthanide series, are key components of many clean energy technologies, including wind turbines and photovoltaics. Because most of these 4f metals are at high risk of supply chain disruption, the development of new recovery technologies is necessary to avoid future shortages, which may impact renewable energy production. This paper reports the synthesis of a non-natural biogenic material as a potential platform for bioinspired lanthanide extraction. The biogenic material takes advantage of the atomically precise structure of a 2D crystalline protein lattice with the high lanthanide binding affinity of hydroxypyridinonate chelators. Luminescence titration data demonstrated that the engineered protein layers have affinities for all tested lanthanides in the micromolar-range (dissociation constants) and a higher binding affinity for the lanthanide ions with a smaller ionic radius. Furthermore, competitive titrations confirmed the higher selectivity (up to several orders of magnitude) of the biogenic material for lanthanides compared to other cations commonly found in f-element sources. Lastly, the functionalized protein layers could be reused in several cycles by desorbing the bound metal with citrate solutions. Taken together, these results highlight biogenic materials as promising bioadsorption platforms for the selective binding of lanthanides, with potential applications in the recovery of these critical elements from waste.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marimikel Charrier
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sara Tejedor-Sanz
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dong Li
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M Ajo-Franklin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of BioSciences, Rice University, Houston, Texas 77005, United States
| | - Corie Y Ralston
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Pedroso CC, Mann VR, Zuberbühler K, Bohn MF, Yu J, Altoe V, Craik CS, Cohen BE. Immunotargeting of Nanocrystals by SpyCatcher Conjugation of Engineered Antibodies. ACS NANO 2021; 15:18374-18384. [PMID: 34694776 PMCID: PMC9035480 DOI: 10.1021/acsnano.1c07856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Inorganic nanocrystals such as quantum dots (QDs) and upconverting nanoparticles (UCNPs) are uniquely suited for quantitative live-cell imaging and are typically functionalized with ligands to study specific receptors or cellular targets. Antibodies (Ab) are among the most useful targeting reagents owing to their high affinities and specificities, but common nanocrystal labeling methods may orient Ab incorrectly, be reversible or denaturing, or lead to Ab-NP complexes too large for some applications. Here, we show that SpyCatcher proteins, which bind and spontaneously form covalent isopeptide bonds with cognate SpyTag peptides, can conjugate engineered Ab to nanoparticle surfaces with control over stability, orientation, and stoichiometry. Compact SpyCatcher-functionalized QDs and UCNPs may be labeled with short-chain variable fragment Ab (scFv) engineered to bind urokinase-type plasminogen activator receptors (uPAR) that are overexpressed in many human cancers. Confocal imaging of anti-uPAR scFv-QD conjugates shows the antibody mediates specific binding and internalization by breast cancer cells expressing uPAR. Time-lapse imaging of photostable scFv-UCNP conjugates shows that Ab binding causes uPAR internalization with a ∼20 min half-life on the cell surface, and uPAR is internalized to endolysosomal compartments distinct from general membrane stains and without significant recycling to the cell surface. The controlled and stable conjugation of engineered Ab to NPs enables targeting of diverse receptors for live-cell study of their distribution, trafficking, and physiology.
Collapse
Affiliation(s)
- Cassio C.S. Pedroso
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Victor R. Mann
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Kathrin Zuberbühler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Markus-Frederik Bohn
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Jessica Yu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Virginia Altoe
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94143, United States
| | - Bruce E. Cohen
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Corresponding Author:
| |
Collapse
|