1
|
Lin K, Hou Y, Li R, Fan F, Hao Y, Wang Y, Huang Y, Li P, Zhu L, Huang X, Zhao YQ. Annexin-A1 tripeptide enhances functional recovery and mitigates brain damage in traumatic brain injury by inhibiting neuroinflammation and preventing ANXA1 nuclear translocation in mice. Metab Brain Dis 2024; 39:1559-1571. [PMID: 39120851 DOI: 10.1007/s11011-024-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This study explores the role and mechanism of Annexin-A1 Tripeptide (ANXA1sp) in mitigating neuronal damage and promoting functional recovery in a mouse model of traumatic brain injury (TBI). Our goal is to identify ANXA1sp as a potential therapeutic drug candidate for TBI treatment. Adult male C57BL/6J mice were subjected to controlled cortical impact (CCI) to simulate TBI, supplemented by an in vitro model of glutamate-induced TBI in HT22 cells. We assessed neurological deficits using the Modified Neurological Severity Score (mNSS), tested sensorimotor functions with beam balance and rotarod tests, and evaluated cognitive performance via the Morris water maze. Neuronal damage was quantified using Nissl and TUNEL staining, while microglial activation and inflammatory responses were measured through immunostaining, quantitative PCR (qPCR), Western blotting, and ELISA. Additionally, we evaluated cell viability in response to glutamate toxicity using the Cell Counting Kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release. Intraperitoneal administration of ANXA1sp significantly enhanced neurological outcomes, markedly reducing sensorimotor and cognitive impairments caused by TBI. This treatment resulted in a significant reduction in lesion volume and decreased neuronal cell death in the ipsilateral cortex. Moreover, ANXA1sp effectively diminished microglial activation around the brain lesion and decreased the levels of pro-inflammatory markers such as IL-6, IL-1β, TNF-α, and TGF-β in the cortex, indicating a significant reduction in neuroinflammation post-TBI. ANXA1sp also offered protection against neuronal cell death induced by glutamate toxicity, primarily by inhibiting the nuclear translocation of ANXA1, highlighting its potential as a neuroprotective strategy in TBI management. Administration of ANXA1sp significantly reduced neuroinflammation and neuronal cell death, primarily by blocking the nuclear translocation of ANXA1. This treatment substantially reduced brain damage and improved neurological functional recovery after TBI. Consequently, ANXA1sp stands out as a promising neuroprotective agent for TBI therapy.
Collapse
Affiliation(s)
- Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yuejiao Hou
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruxin Li
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fengyan Fan
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yinan Hao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuan Wang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yue Huang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Peng Li
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Lingling Zhu
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Yong-Qi Zhao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
2
|
Krokengen OC, Touma C, Mularski A, Sutinen A, Dunkel R, Ytterdal M, Raasakka A, Mertens HDT, Simonsen AC, Kursula P. The cytoplasmic tail of myelin protein zero induces morphological changes in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184368. [PMID: 38971517 DOI: 10.1016/j.bbamem.2024.184368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
The major myelin protein expressed by the peripheral nervous system Schwann cells is protein zero (P0), which represents 50% of the total protein content in myelin. This 30-kDa integral membrane protein consists of an immunoglobulin (Ig)-like domain, a transmembrane helix, and a 69-residue C-terminal cytoplasmic tail (P0ct). The basic residues in P0ct contribute to the tight packing of myelin lipid bilayers, and alterations in the tail affect how P0 functions as an adhesion molecule necessary for the stability of compact myelin. Several neurodegenerative neuropathies are related to P0, including the more common Charcot-Marie-Tooth disease (CMT) and Dejerine-Sottas syndrome (DSS) as well as rare cases of motor and sensory polyneuropathy. We found that high P0ct concentrations affected the membrane properties of bicelles and induced a lamellar-to-inverted hexagonal phase transition, which caused bicelles to fuse into long, protein-containing filament-like structures. These structures likely reflect the formation of semicrystalline lipid domains with potential relevance for myelination. Not only is P0ct important for stacking lipid membranes, but time-lapse fluorescence microscopy also shows that it might affect membrane properties during myelination. We further describe recombinant production and low-resolution structural characterization of full-length human P0. Our findings shed light on P0ct effects on membrane properties, and with the successful purification of full-length P0, we have new tools to study the role of P0 in myelin formation and maintenance in vitro.
Collapse
Affiliation(s)
- Oda C Krokengen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christine Touma
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Aleksi Sutinen
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ryan Dunkel
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Marie Ytterdal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory EMBL, Hamburg Site, c/o DESY, Hamburg, Germany
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway; Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
3
|
Cui Q, Qin N, Zhang Y, Miao Y, Xie L, Ma X, Zhang Z, Xie P. Neuroprotective effects of annexin A1 tripeptide in rats with sepsis-associated encephalopathy. Biotechnol Appl Biochem 2024; 71:701-711. [PMID: 38409880 DOI: 10.1002/bab.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.
Collapse
Affiliation(s)
- Qiao Cui
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Nannan Qin
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yonghan Zhang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| |
Collapse
|
4
|
Song L, Shen W, Wang L, Song J, Tu W, Ke B, Fang X. Annexin A1 may contribute to the morphological changes in podocytes by mediating endocytic vesicle fusion and transport via promotion of SNARE assembly in idiopathic membranous nephropathy. Nephrology (Carlton) 2024; 29:76-85. [PMID: 37927194 DOI: 10.1111/nep.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Annexin A1 is a membrane-associated calcium-binding protein that participates in the progression of many diseases by facilitating vesicle aggregation. It has been documented that reducing vesicle formation alleviates podocyte injury and albuminuria in idiopathic membranous nephropathy (IMN). However, the role of Annexin A1 (ANXA1) in IMN is unknown. METHODS Electron microscopy was used to observe the numbers of vesicles in podocytes. The expression of ANXA1 in IMN was investigated by bioinformatics analysis. We validated the hub genes with the Nephroseq V5 online tool and microarray data from the GEO. Immunohistochemical staining and qPCR were performed to measure gene and protein expression. RESULTS The numbers of vesicles in IMN podocytes were significantly increased. Bioinformatics analysis showed that ANXA1, one of the differentially expressed genes, was upregulated in glomeruli from IMN patients. In the validation database and dataset, we confirmed that ANXA1 expression was upregulated in the glomeruli of IMN patients. We revealed that the increased expression of ANXA1 was negatively correlated with the glomerular filtration rate (GFR) and proteinuria. Moreover, ANXA1 was enriched in the biological process of vesicle fusion, in which the expression of SNAREs and the SNARE complex was increased. Finally, the expression of ANXA1 and genes related to SNAREs and the SNARE complex was upregulated in glomeruli from IMN patients according to immunohistochemical staining and qPCR. CONCLUSION We conclude that ANXA1 may mediate endocytic vesicle fusion and transport by promoting SNARE assembly, contributing to the morphological changes in podocytes and massive proteinuria in IMN.
Collapse
Affiliation(s)
- Lei Song
- Department of General Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital to Nanchang University, Nanchang, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital to Nanchang University, Nanchang, China
| | - Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiping Tu
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Hakami Zanjani AA, Mularski A, Busk Heitmann AS, Dias C, Møller ME, Maeda K, Nylandsted J, Simonsen AC, Khandelia H. Engineering a membrane-binding protein to trimerize and induce high membrane curvature. Biophys J 2023; 122:3008-3017. [PMID: 37029488 PMCID: PMC10398344 DOI: 10.1016/j.bpj.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
The annexins are a family of Ca2+-dependent peripheral membrane proteins. Several annexins are implicated in plasma membrane repair and are overexpressed in cancer cells. Annexin A4 (ANXA4) and annexin A5 (ANXA5) form trimers that induce high curvature on a membrane surface, a phenomenon deemed to accelerate membrane repair. Despite being highly homologous to ANXA4, annexin A3 (ANXA3) does not form trimers on the membrane surface. Using molecular dynamics simulations, we have reverse engineered an ANXA3-mutant to trimerize on the surface of the membrane and induce high curvature reminiscent of ANXA4. In addition, atomic force microscopy images show that, like ANXA4, the engineered protein forms crystalline arrays on a supported lipid membrane. Despite the trimer-forming and curvature-inducing properties of the engineered ANXA3, it does not accumulate near a membrane lesion in laser-punctured cells and is unable to repair the lesion. Our investigation provides insights into the factors that drive annexin-mediated membrane repair and shows that the membrane-repairing property of trimer-forming annexins also necessitates high membrane binding affinity, other than trimer formation and induction of negative membrane curvature.
Collapse
Affiliation(s)
- Ali Asghar Hakami Zanjani
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna Mularski
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Catarina Dias
- Danish Cancer Society, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Michelle Ege Møller
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Kenji Maeda
- Danish Cancer Society, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Jesper Nylandsted
- Danish Cancer Society, Danish Cancer Society Research Center, Copenhagen, Denmark; University of Southern Denmark, Department of Molecular Medicine, Odense, Denmark
| | - Adam Cohen Simonsen
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Himanshu Khandelia
- University of Southern Denmark, PHYLIFE: Physical Life Science, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
6
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Interplay of membrane crosslinking and curvature induction by annexins. Sci Rep 2022; 12:22568. [PMID: 36581673 PMCID: PMC9800579 DOI: 10.1038/s41598-022-26633-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
Efficient plasma membrane repair (PMR) is required to repair damage sustained in the cellular life cycle. The annexin family of proteins, involved in PMR, are activated by Ca2+ influx from extracellular media at the site of injury. Mechanistic studies of the annexins have been overwhelmingly performed using a single annexin, despite the recruitment of multiple annexins to membrane damage sites in living cells. Hence, we investigate the effect of the presence of the crosslinking annexins, annexin A1, A2 and A6 (ANXA1, ANXA2 and ANXA6) on the membrane curvature induction of annexin A4 (ANXA4) in model membrane systems. Our data support a mechanistic model of PMR where ANXA4 induced membrane curvature and ANXA6 crosslinking promotes wound closure. The model now can be expanded to include ANXA1 and ANXA2 as specialist free edge membrane crosslinkers that act in concert with ANXA4 induced curvature and ANXA6 crosslinking.
Collapse
|
8
|
Shen K, Miao J, Gao Q, Ling X, Liang Y, Zhou Q, Song Q, Luo Y, Wu Q, Shen W, Wang X, Li X, Liu Y, Zhou S, Tang Y, Zhou L. Annexin A2 plays a key role in protecting against cisplatin-induced AKI through β-catenin/TFEB pathway. Cell Death Dis 2022; 8:430. [PMID: 36307397 PMCID: PMC9616836 DOI: 10.1038/s41420-022-01224-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
AbstractAcute kidney injury (AKI) is in high prevalence in the world. However, the therapeutic strategies for AKI are still in mystery. Studies have shown to improve autophagy and lysosomal function could inhibit AKI. But their modulators need to be explored in detail. Annexin A2 (ANXA2) is a phospholipid-binding protein involving in organelle membrane integrity function, suggesting its important role in autophagy and lysosome homeostasis. It implicates ANXA2 potentially protects against AKI. However, this has not been elucidated. Herein, we found that ANXA2 is increased in renal tubules in cisplatin-induced AKI mice. Ectopic expression of ANXA2 improved lysosomal functions and enhanced autophagic flux, further protecting against renal tubular cell apoptosis and kidney injury. Conversely, knockdown of ANXA2 inhibited lysosomal function and autophagy, which aggravated the progression of AKI. Transcriptome sequencing revealed β-catenin signaling is highly responsible for this process. In vitro, we found ANXA2 induced β-catenin activation, further triggering T-cell factor-4 (TCF4)-induced transcription factor EB (TFEB). Furthermore, TFEB promoted lysosome biogenesis to enhance autophagic flux, resulting in the alleviation of AKI. Our new findings underline ANXA2 is a new therapeutic potential for AKI through modulating autophagy and lysosomal function. The underlying mechanism is associated with its inductive effects on β-catenin/TFEB pathway.
Collapse
|
9
|
Yan Z, Yuan H, Wang J, Yang Z, Zhang P, Mahmmod YS, Wang X, Liu T, Song Y, Ren Z, Zhang XX, Yuan ZG. Four Chemotherapeutic Compounds That Limit Blood-Brain-Barrier Invasion by Toxoplasma gondii. Molecules 2022; 27:molecules27175572. [PMID: 36080339 PMCID: PMC9457825 DOI: 10.3390/molecules27175572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Toxoplasma gondii, an intracellular protozoan parasite, exists in the host brain as cysts, which can result in Toxoplasmic Encephalitis (TE) and neurological diseases. However, few studies have been conducted on TE, particularly on how to prevent it. Previous proteomics studies have showed that the expression of C3 in rat brains was up-regulated after T. gondii infection. Methods: In this study, we used T. gondii to infect mice and bEnd 3 cells to confirm the relation between T. gondii and the expression of C3. BEnd3 cells membrane proteins which directly interacted with C3a were screened by pull down. Finally, animal behavior experiments were conducted to compare the differences in the inhibitory ability of TE by four chemotherapeutic compounds (SB290157, CVF, NSC23766, and Anxa1). Results: All chemotherapeutic compounds in this study can inhibit TE and cognitive behavior in the host. However, Anxa 1 is the most suitable material to inhibit mice TE. Conclusion: T. gondii infection promotes TE by promoting host C3 production. Anxa1 was selected as the most appropriate material to prevent TE among four chemotherapeutic compounds closely related to C3.
Collapse
Affiliation(s)
- Zijing Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Hao Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- College of Veterinary Medicine, Xinjiang Agricultual University, Urumqi 830052, China
| | - Junjie Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zipeng Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Pian Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yasser S. Mahmmod
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
- Veterinary Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates
| | - Xiaohu Wang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tanghui Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yining Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaowen Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiu-Xiang Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.-X.Z.); (Z.-G.Y.)
| | - Zi-Guo Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.-X.Z.); (Z.-G.Y.)
| |
Collapse
|
10
|
ANNEXIN A1: Roles in Placenta, Cell Survival, and Nucleus. Cells 2022; 11:cells11132057. [PMID: 35805141 PMCID: PMC9266233 DOI: 10.3390/cells11132057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 01/27/2023] Open
Abstract
The unbiased approaches of the last decade have enabled the collection of new data on the biology of annexin A1 (ANXA1) in a variety of scientific aspects, creating opportunities for new biomarkers and/or therapeutic purposes. ANXA1 is found in the plasma membrane, cytoplasm, and nucleus, being described at low levels in the nuclear and cytoplasmic compartments of placental cells related to gestational diabetic diseases, and its translocation from the cytoplasm to the nucleus has been associated with a response to DNA damage. The approaches presented here open pathways for reflection upon, and intrinsic clarification of, the modulating action of this protein in the response to genetic material damage, as well as its level of expression and cellular localization. The objective of this study is to arouse interest, with an emphasis on the mechanisms of nuclear translocation of ANXA1, which remain underexplored and may be beneficial in new inflammatory therapies.
Collapse
|
11
|
The Ca 2+- and phospholipid-binding protein Annexin A2 is able to increase and decrease plasma membrane order. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183810. [PMID: 34699769 DOI: 10.1016/j.bbamem.2021.183810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
Annexin A2 (AnxA2) is a calcium- and phospholipid-binding protein that plays roles in cellular processes involving membrane and cytoskeleton dynamics and is able to associate to several partner proteins. However, the principal molecular partners of AnxA2 are negatively charged phospholipids such as phosphatidylserine and phosphatidyl-inositol-(4,5)-phosphate. Herein we have studied different aspects of membrane lipid rearrangements induced by AnxA2 membrane binding. X-ray diffraction data revealed that AnxA2 has the property to stabilize lamellar structures and to block the formation of highly curved lipid phases (inverted hexagonal phase, HII). By using pyrene-labelled cholesterol and the environmental probe di-4-ANEPPDHQ, we observed that in model membranes, AnxA2 is able to modify both, cholesterol distribution and lipid compaction. In epithelial cells, we observed that AnxA2 localizes to membranes of different lipid order. The protein binding to membranes resulted in both, increases and/or decreases in membrane order depending on the cellular membrane regions. Overall, AnxA2 showed the capacity to modulate plasma membrane properties by inducing lipid redistribution that may lead to an increase in order or disorder of the membranes.
Collapse
|
12
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Annexins Bridging the Gap: Novel Roles in Membrane Contact Site Formation. Front Cell Dev Biol 2022; 9:797949. [PMID: 35071237 PMCID: PMC8770259 DOI: 10.3389/fcell.2021.797949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 01/16/2023] Open
Abstract
Membrane contact sites (MCS) are specialized small areas of close apposition between two different organelles that have led researchers to reconsider the dogma of intercellular communication via vesicular trafficking. The latter is now being challenged by the discovery of lipid and ion transfer across MCS connecting adjacent organelles. These findings gave rise to a new concept that implicates cell compartments not to function as individual and isolated entities, but as a dynamic and regulated ensemble facilitating the trafficking of lipids, including cholesterol, and ions. Hence, MCS are now envisaged as metabolic platforms, crucial for cellular homeostasis. In this context, well-known as well as novel proteins were ascribed functions such as tethers, transporters, and scaffolds in MCS, or transient MCS companions with yet unknown functions. Intriguingly, we and others uncovered metabolic alterations in cell-based disease models that perturbed MCS size and numbers between coupled organelles such as endolysosomes, the endoplasmic reticulum, mitochondria, or lipid droplets. On the other hand, overexpression or deficiency of certain proteins in this narrow 10-30 nm membrane contact zone can enable MCS formation to either rescue compromised MCS function, or in certain disease settings trigger undesired metabolite transport. In this "Mini Review" we summarize recent findings regarding a subset of annexins and discuss their multiple roles to regulate MCS dynamics and functioning. Their contribution to novel pathways related to MCS biology will provide new insights relevant for a number of human diseases and offer opportunities to design innovative treatments in the future.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
13
|
Uusitalo M, Klenow MB, Laulumaa S, Blakeley MP, Simonsen AC, Ruskamo S, Kursula P. Human myelin protein P2: from crystallography to time-lapse membrane imaging and neuropathy-associated variants. FEBS J 2021; 288:6716-6735. [PMID: 34138518 DOI: 10.1111/febs.16079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Peripheral myelin protein 2 (P2) is a fatty acid-binding protein expressed in vertebrate peripheral nervous system myelin, as well as in human astrocytes. Suggested functions of P2 include membrane stacking and lipid transport. Mutations in the PMP2 gene, encoding P2, are associated with Charcot-Marie-Tooth disease (CMT). Recent studies have revealed three novel PMP2 mutations in CMT patients. To shed light on the structure and function of these P2 variants, we used X-ray and neutron crystallography, small-angle X-ray scattering, circular dichroism spectroscopy, computer simulations and lipid binding assays. The crystal and solution structures of the I50del, M114T and V115A variants of P2 showed minor differences to the wild-type protein, whereas their thermal stability was reduced. Vesicle aggregation assays revealed no change in membrane stacking characteristics, while the variants showed altered fatty acid binding. Time-lapse imaging of lipid bilayers indicated formation of double-membrane structures induced by P2, which could be related to its function in stacking of two myelin membrane surfaces in vivo. In order to better understand the links between structure, dynamics and function, the crystal structure of perdeuterated P2 was refined from room temperature data using neutrons and X-rays, and the results were compared to simulations and cryocooled crystal structures. Our data indicate similar properties for all known human P2 CMT variants; while crystal structures are nearly identical, thermal stability and function of CMT variants are impaired. Our data provide new insights into the structure-function relationships and dynamics of P2 in health and disease.
Collapse
Affiliation(s)
- Maiju Uusitalo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Saara Laulumaa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,European Spallation Source, Lund, Sweden
| | | | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Finland.,Department of Biomedicine, University of Bergen, Norway
| |
Collapse
|