1
|
Zhang Y, Jafari M, Zhang T, Sui D, Sagresti L, Merz KM, Hu J. Molecular insights into substrate translocation in an elevator-type metal transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613805. [PMID: 39345646 PMCID: PMC11429975 DOI: 10.1101/2024.09.18.613805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The Zrt/Irt-like protein (ZIP) metal transporters are key players in maintaining the homeostasis of a panel of essential microelements. The prototypical ZIP from Bordetella bronchiseptica (BbZIP) is an elevator transporter, but how the metal substrate moves along the transport pathway and how the transporter changes conformation to allow alternating access remain to be elucidated. Here, we combined structural, biochemical, and computational approaches to investigate the process of metal substrate translocation along with the global structural rearrangement. Our study revealed an upward hinge motion of the transport domain in a high-resolution crystal structure of a cross-linked variant, elucidated the mechanisms of metal release from the transport site into the cytoplasm and activity regulation by a cytoplasmic metal-binding loop, and unraveled an unusual elevator mode in enhanced sampling simulations that distinguishes BbZIP from other elevator transporters. This work provides important insights into the metal transport mechanism of the ZIP family.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Majid Jafari
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Tuo Zhang
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Dexin Sui
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
| | - Luca Sagresti
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy and CSGI
- Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Kenneth M. Merz
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| | - Jian Hu
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824
- Department of Chemistry, Michigan State University, MI 48824
| |
Collapse
|
2
|
Ma S, Wang WX. Physiological trade-off of marine fish under Zn deficient and excess conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166187. [PMID: 37586517 DOI: 10.1016/j.scitotenv.2023.166187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Fish can regulate their Zn body bioaccumulation, but the mechanisms and physiological responses at the organ level are still largely unknown. In the present study, we exposed the marine seabreams under different Zn levels (deficient, optimum and excess levels) over a period of 4 weeks and examined how fish maintained its regulation of bioaccumulation with associated physiological effects at the fish intestinal organ. Our results indicated that fish intestinal organs constantly controlled the Zip family to "rob" more Zn under Zn-deficiency (with a dietary level of 7.9 mg/kg), whereas restricted the Zn efflux to preserve the intestinal function. Under Zn-excess conditions (193.3 mg/kg), the fish intestine maintained a limited Zn homeostasis (37.8-44.6 μg/mg) by initially inhibiting the influx through the Zip family receptor, but later accelerating both influx and efflux of Zn. Based on the WGCNA method, Zn deficient dietary exposure first resulted in defense response with subsequent switching to antioxidant defense. Instead, excess Zn first triggered the immunological response, but then led to physiological toxicity (abnormal in lipid metabolism). Although Zn had multiple biological functions, it was preferentially involved in lipid metabolism under different dietary Zn doses. This study provided direct evidence for Zn regulation at the organ level and detoxification mechanisms against potential environmental toxicity in fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Wang H, Du X, Zhang Z, Feng F, Zhang J. Rhizosphere interface microbiome reassembly by arbuscular mycorrhizal fungi weakens cadmium migration dynamics. IMETA 2023; 2:e133. [PMID: 38868220 PMCID: PMC10989832 DOI: 10.1002/imt2.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/14/2023] [Accepted: 08/08/2023] [Indexed: 06/14/2024]
Abstract
The prevalence of cadmium (Cd)-polluted agricultural soils is increasing globally, and arbuscular mycorrhizal fungi (AMF) can reduce the absorption of heavy metals by plants and improve mineral nutrition. However, the immobilization of the rhizosphere on cadmium is often overlooked. In this study, Glomus mosseae and Medicago sativa were established as symbiotes, and Cd migration and environmental properties in the rhizosphere were analyzed. AMF reduced Cd migration, and Cd2+ changed to an organic-bound state. AMF symbiosis treatment and Cd exposure resulted in microbial community variation, exhibiting a distinct deterministic process (|βNTI| > 2), which ultimately resulted in a core microbiome function of heavy metal resistance and nutrient cycling. AMF increased available N and P, extracellular enzyme activity (LaC, LiP, and CAT), organic matter content (TOC, EOC, and GRSP), and Eh of the rhizosphere soil, significantly correlating with decreased Cd migration (p < 0.05). Furthermore, AMF significantly affected root metabolism by upregulating 739 metabolites, with flavonoids being the main factor causing microbiome variation. The structural equation model and variance partial analysis revealed that the superposition of the root metabolites, microbial, and soil exhibited the maximum explanation rate for Cd migration reduction (42.4%), and the microbial model had the highest single explanation rate (15.5%). Thus, the AMF in the rhizosphere microenvironment can regulate metabolite-soil-microbial interactions, reducing Cd migration. In summary, the study provides a new scientific explanation for how AMF improves plant Cd tolerance and offers a sustainable solution that could benefit both the environment and human health.
Collapse
Affiliation(s)
- Hong‐Rui Wang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Xin‐Ran Du
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Zhuo‐Yun Zhang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Fu‐Juan Feng
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| | - Jia‐Ming Zhang
- College of Life ScienceNortheast Forestry UniversityHarbinChina
| |
Collapse
|
4
|
Pang C, Chai J, Zhu P, Shanklin J, Liu Q. Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters. Nat Commun 2023; 14:3404. [PMID: 37296139 PMCID: PMC10256678 DOI: 10.1038/s41467-023-39010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Zinc is an essential micronutrient that supports all living organisms through regulating numerous biological processes. However, the mechanism of uptake regulation by intracellular Zn2+ status remains unclear. Here we report a cryo-electron microscopy structure of a ZIP-family transporter from Bordetella bronchiseptica at 3.05 Å resolution in an inward-facing, inhibited conformation. The transporter forms a homodimer, each protomer containing nine transmembrane helices and three metal ions. Two metal ions form a binuclear pore structure, and the third ion is located at an egress site facing the cytoplasm. The egress site is covered by a loop, and two histidine residues on the loop interact with the egress-site ion and regulate its release. Cell-based Zn2+ uptake and cell growth viability assays reveal a negative regulation of Zn2+ uptake through sensing intracellular Zn2+ status using a built-in sensor. These structural and biochemical analyses provide mechanistic insight into the autoregulation of zinc uptake across membranes.
Collapse
Affiliation(s)
- Changxu Pang
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
5
|
Pasquadibisceglie A, Leccese A, Polticelli F. A computational study of the structure and function of human Zrt and Irt-like proteins metal transporters: An elevator-type transport mechanism predicted by AlphaFold2. Front Chem 2022; 10:1004815. [PMID: 36204150 PMCID: PMC9530640 DOI: 10.3389/fchem.2022.1004815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
The ZIP (Zrt and Irt-like proteins) protein family includes transporters responsible for the translocation of zinc and other transition metals, such as iron and cadmium, between the extracellular space (or the lumen of organelles) and the cytoplasm. This protein family is present at all the phylogenetic levels, including bacteria, fungi, plants, insects, and mammals. ZIP proteins are responsible for the homeostasis of metals essential for the cell physiology. The human ZIP family consists of fourteen members (hZIP1-hZIP14), divided into four subfamilies: LIV-1, containing nine hZIPs, the subfamily I, with only one member, the subfamily II, which includes three members and the subfamily gufA, which has only one member. Apart from the extracellular domain, typical of the LIV-1 subfamily, the highly conserved transmembrane domain, containing the binuclear metal center (BMC), and the histidine-rich intracellular loop are the common features characterizing the ZIP family. Here is presented a computational study of the structure and function of human ZIP family members. Multiple sequence alignment and structural models were obtained for the 14 hZIP members. Moreover, a full-length three-dimensional model of the hZIP4-homodimer complex was also produced. Different conformations of the representative hZIP transporters were obtained through a modified version of the AlphaFold2 algorithm. The inward and outward-facing conformations obtained suggest that the hZIP proteins function with an “elevator-type” mechanism.
Collapse
Affiliation(s)
| | | | - Fabio Polticelli
- Department of Sciences, Roma Tre University, Rome, Italy
- National Institute of Nuclear Physics, Roma Tre Section, Rome, Italy
- *Correspondence: Fabio Polticelli,
| |
Collapse
|
6
|
Sharma G, Merz KM. Mechanism of Zinc Transport through the Zinc Transporter YiiP. J Chem Theory Comput 2022; 18:2556-2568. [PMID: 35226479 DOI: 10.1021/acs.jctc.1c00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc is an essential transition metal ion that plays as a structural, functional (catalytic), and a signaling molecule regulating cellular function. Unbalanced levels of zinc in cells can result in various pathological conditions. In the current work, all-atom molecular dynamics simulations were used to study the structure-function correlation between different YiiP states embedded in a lipid bilayer. This study enabled us to develop a hypothesis on the zinc efflux mechanism of YiiP. We have created six different models of YiiP representing the stages of the ion-transport process. We found that zinc ion plays a crucial role in restraining the transmembrane domains (TMDs) of the protein. In addition, H153, located in the TMD, has been proposed to guide the zinc ion toward the ZnA site of the YiiP transporter. Understanding the molecular-level Zn2+-transport process sheds light on the strategies affecting intracellular transition-metal ion concentrations in order to treat diseases like diabetes and cancer.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
7
|
Roberts CS, Ni F, Mitra B. The Zinc and Iron Binuclear Transport Center of ZupT, a ZIP Transporter from Escherichia coli. Biochemistry 2021; 60:3738-3752. [PMID: 34793140 DOI: 10.1021/acs.biochem.1c00621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ZupT fromEscherichia coliis a member of the Zrt-/Irt-like Protein (ZIP) transporter family, which is responsible for zinc uptake during zinc-sufficient conditions. ZIP transporters have been shown to transport different divalent metal ions including zinc, iron, manganese, and cadmium. In this study, we show that ZupT has an asymmetric binuclear metal center in the transmembrane domain; one metal-binding site, M1, binds zinc, cadmium, and iron, while the other, M2, binds iron only and with higher affinity than M1. Using site-specific mutagenesis and transport activity measurements in whole cells and proteoliposomes, we show that zinc is transported from M1, while iron is transported from M2. The two sites share a common bridging ligand, a conserved glutamate residue. M1 and M2 have ligands from highly conserved motifs in transmembrane domains 4 and 5. Additionally, M2 has a ligand from transmembrane domain 6, a glutamate residue, which is conserved in the gufA subfamily of ZIP transporters, including ZupT and the human ZIP11. Unlike cadmium, iron transport from M2 does not inhibit the zinc transport activity but slightly stimulates it. This stimulation of activity is mediated through the bridging carboxylate ligand. The binuclear zinc-iron binding center in ZupT has likely evolved to enable the transport of essential metals from two different sites without competition; a similar mechanism of metal transport is likely to be found in the gufA subfamily of ZIP transporter proteins.
Collapse
Affiliation(s)
- Cameron S Roberts
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
| | - Fei Ni
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
| | - Bharati Mitra
- Department of Biochemistry, Microbiology and Immunology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|