1
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Lahiri H, Israeli E, Krugliak M, Basu K, Britan-Rosich Y, Yaish TR, Arkin IT. Potent Anti-Influenza Synergistic Activity of Theobromine and Arainosine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618054. [PMID: 39416015 PMCID: PMC11482935 DOI: 10.1101/2024.10.13.618054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Influenza represents one of the biggest health threats facing humanity. Seasonal epidemics can transition to global pandemics, with cross-species infection presenting a continuous challenge. Although vaccines and several anti-viral options are available, constant genetic drifts and shifts vitiate any of the aforementioned prevention and treatment options. Therefore, we describe an approach targeted at the virus's channel to derive new anti-viral options. Specifically, Influenza A's M2 protein is a well-characterized channel targeted for a long time by aminoadamantane blockers. However, widespread mutations in the protein render the drugs ineffective. Consequently, we started by screening a repurposed drug library against aminoadamantane-sensitive and resistant M2 channels using bacteria-based genetic assays. Subsequent in cellulo testing and structure-activity relationship studies yielded a combination of Theobromine and Arainosine, which exhibits stark anti-viral activity by inhibiting the virus's channel. The drug duo was potent against H1N1 pandemic swine flu, H5N1 pandemic avian flu, aminoadamantane-resistant and sensitive strains alike, exhibiting activity that surpassed Oseltamivir, the leading anti-flu drug on the market. When this drug duo was tested in an animal model, it once more outperformed Oseltamivir, considerably reducing disease symptoms and viral RNA progeny. In conclusion, the outcome of this study represents a new potential treatment option for influenza alongside an approach that is sufficiently general and readily applicable to other viral targets.
Collapse
|
3
|
Georgiou K, Konstantinidi A, Hutterer J, Freudenberger K, Kolarov F, Lambrinidis G, Stylianakis I, Stampelou M, Gauglitz G, Kolocouris A. Accurate calculation of affinity changes to the close state of influenza A M2 transmembrane domain in response to subtle structural changes of adamantyl amines using free energy perturbation methods in different lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184258. [PMID: 37995846 DOI: 10.1016/j.bbamem.2023.184258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).
Collapse
Affiliation(s)
- Kyriakos Georgiou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Athina Konstantinidi
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Johanna Hutterer
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Kathrin Freudenberger
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Felix Kolarov
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany; Roche, Penzberg, Bavaria, Germany
| | - George Lambrinidis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Ioannis Stylianakis
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Margarita Stampelou
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Günter Gauglitz
- Institut für Physikalische und Theoretische Chemie, Eberhard-Karls-Universität, D-72076 Tübingen, Germany
| | - Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens (NKUA), Panepistimiopolis-Zografou, 15771 Athens, Greece.
| |
Collapse
|
4
|
Papadourakis M, Sinenka H, Matricon P, Hénin J, Brannigan G, Pérez-Benito L, Pande V, van Vlijmen H, de Graaf C, Deflorian F, Tresadern G, Cecchini M, Cournia Z. Alchemical Free Energy Calculations on Membrane-Associated Proteins. J Chem Theory Comput 2023; 19:7437-7458. [PMID: 37902715 PMCID: PMC11017255 DOI: 10.1021/acs.jctc.3c00365] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 10/31/2023]
Abstract
Membrane proteins have diverse functions within cells and are well-established drug targets. The advances in membrane protein structural biology have revealed drug and lipid binding sites on membrane proteins, while computational methods such as molecular simulations can resolve the thermodynamic basis of these interactions. Particularly, alchemical free energy calculations have shown promise in the calculation of reliable and reproducible binding free energies of protein-ligand and protein-lipid complexes in membrane-associated systems. In this review, we present an overview of representative alchemical free energy studies on G-protein-coupled receptors, ion channels, transporters as well as protein-lipid interactions, with emphasis on best practices and critical aspects of running these simulations. Additionally, we analyze challenges and successes when running alchemical free energy calculations on membrane-associated proteins. Finally, we highlight the value of alchemical free energy calculations calculations in drug discovery and their applicability in the pharmaceutical industry.
Collapse
Affiliation(s)
- Michail Papadourakis
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| | - Hryhory Sinenka
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Pierre Matricon
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Jérôme Hénin
- Laboratoire
de Biochimie Théorique UPR 9080, CNRS and Université Paris Cité, 75005 Paris, France
| | - Grace Brannigan
- Center
for Computational and Integrative Biology, Rutgers University−Camden, Camden, New Jersey 08103, United States of America
- Department
of Physics, Rutgers University−Camden, Camden, New Jersey 08102, United States
of America
| | - Laura Pérez-Benito
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Vineet Pande
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Herman van Vlijmen
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Chris de Graaf
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Francesca Deflorian
- Sosei
Heptares, Steinmetz Building,
Granta Park, Great Abington, Cambridge CB21 6DG, United
Kingdom
| | - Gary Tresadern
- CADD,
In Silico Discovery, Janssen Research &
Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Marco Cecchini
- Institut
de Chimie de Strasbourg, UMR7177, CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Zoe Cournia
- Biomedical
Research Foundation, Academy of Athens, 4 Soranou Ephessiou, 11527 Athens, Greece
| |
Collapse
|
5
|
Stampolaki Μ, Hoffmann A, Tekwani K, Georgiou K, Tzitzoglaki C, Ma C, Becker S, Schmerer P, Döring K, Stylianakis I, Turcu AL, Wang J, Vázquez S, Andreas LB, Schmidtke M, Kolocouris A. A Study of the Activity of Adamantyl Amines against Mutant Influenza A M2 Channels Identified a Polycyclic Cage Amine Triple Blocker, Explored by Molecular Dynamics Simulations and Solid-State NMR. ChemMedChem 2023; 18:e202300182. [PMID: 37377066 DOI: 10.1002/cmdc.202300182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.
Collapse
Affiliation(s)
- Μarianna Stampolaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Anja Hoffmann
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kumar Tekwani
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Kyriakos Georgiou
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Christina Tzitzoglaki
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Chunlong Ma
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Patrick Schmerer
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Kristin Döring
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Ioannis Stylianakis
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| | - Andreea L Turcu
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Jun Wang
- Department of Medicinal Chemistry, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Santiago Vázquez
- Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, Barcelona, 08028, Spain
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, Germany
| | - Michaela Schmidtke
- Department of Medical Microbiology, Jena University Hospital, CMB Building, R. 443, Hans Knoell Str. 2, 07745, Jena (Germany), Germany
| | - Antonios Kolocouris
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771, Athens, Greece
| |
Collapse
|
6
|
Sedlák J, Přibylová J, Koloňuk I, Špak J, Lenz O, Semerák M. Elimination of Solanum nigrum ilarvirus 1 and Apple Hammerhead Viroid from Apple Cultivars Using Antivirals Ribavirin, Rimantadine, and Zidovudine. Viruses 2023; 15:1684. [PMID: 37632025 PMCID: PMC10459016 DOI: 10.3390/v15081684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Apple hammerhead viroid (AHVd) was detected in the apple cultivar 'Šampion' and in mixed infection with Solanum nigrum ilarvirus 1 (SnIV-1) in the cultivars 'Selena' and 'Jonagored Supra', using a high-throughput sequencing method. Experiments were conducted to eliminate both pathogens in apples using meristem tip cultures in combination with the antivirotics ribavirin, rimantadine, and zidovudine. Elimination of both pathogens was verified by repeated RT-PCR and qRT-PCR assays after 7-11 months. Elimination of SnIV-1 from all cultivars was successful with each of the three antivirotics at concentrations of 20, 40, and 80 mg L-1. Elimination of AHVd was also achieved, although less effectively and only with ribavirin in the concentration range of 20-160 mg L-1.
Collapse
Affiliation(s)
- Jiří Sedlák
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 50801 Holovousy, Czech Republic;
| | - Jaroslava Přibylová
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.P.); (J.Š.); (O.L.)
| | - Igor Koloňuk
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.P.); (J.Š.); (O.L.)
| | - Josef Špak
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.P.); (J.Š.); (O.L.)
| | - Ondřej Lenz
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (J.P.); (J.Š.); (O.L.)
| | - Matěj Semerák
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 50801 Holovousy, Czech Republic;
| |
Collapse
|
7
|
Melling O, Samways ML, Ge Y, Mobley DL, Essex JW. Enhanced Grand Canonical Sampling of Occluded Water Sites Using Nonequilibrium Candidate Monte Carlo. J Chem Theory Comput 2023; 19:1050-1062. [PMID: 36692215 PMCID: PMC9933432 DOI: 10.1021/acs.jctc.2c00823] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/25/2023]
Abstract
Water molecules play a key role in many biomolecular systems, particularly when bound at protein-ligand interfaces. However, molecular simulation studies on such systems are hampered by the relatively long time scales over which water exchange between a protein and solvent takes place. Grand canonical Monte Carlo (GCMC) is a simulation technique that avoids this issue by attempting the insertion and deletion of water molecules within a given structure. The approach is constrained by low acceptance probabilities for insertions in congested systems, however. To address this issue, here, we combine GCMC with nonequilibium candidate Monte Carlo (NCMC) to yield a method that we refer to as grand canonical nonequilibrium candidate Monte Carlo (GCNCMC), in which the water insertions and deletions are carried out in a gradual, nonequilibrium fashion. We validate this new approach by comparing GCNCMC and GCMC simulations of bulk water and three protein binding sites. We find that not only is the efficiency of the water sampling improved by GCNCMC but that it also results in increased sampling of ligand conformations in a protein binding site, revealing new water-mediated ligand-binding geometries that are not observed using alternative enhanced sampling techniques.
Collapse
Affiliation(s)
- Oliver
J. Melling
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| | - Marley L. Samways
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| | - Yunhui Ge
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California92697, United States
| | - David L. Mobley
- Department
of Pharmaceutical Sciences, University of
California, Irvine, California92697, United States
- Department
of Chemistry, University of California, Irvine, California92697, United States
| | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, SouthamptonSO17 1BJ, U.K.
| |
Collapse
|
8
|
Samways M, Bruce Macdonald HE, Taylor RD, Essex JW. Water Networks in Complexes between Proteins and FDA-Approved Drugs. J Chem Inf Model 2023; 63:387-396. [PMID: 36469670 PMCID: PMC9832485 DOI: 10.1021/acs.jcim.2c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Water molecules at protein-ligand interfaces are often of significant pharmaceutical interest, owing in part to the entropy which can be released upon the displacement of an ordered water by a therapeutic compound. Protein structures may not, however, completely resolve all critical bound water molecules, or there may be no experimental data available. As such, predicting the location of water molecules in the absence of a crystal structure is important in the context of rational drug design. Grand canonical Monte Carlo (GCMC) is a computational technique that is gaining popularity for the simulation of buried water sites. In this work, we assess the ability of GCMC to accurately predict water binding locations, using a dataset that we have curated, containing 108 unique structures of complexes between proteins and Food and Drug Administration (FDA)-approved small-molecule drugs. We show that GCMC correctly predicts 81.4% of nonbulk crystallographic water sites to within 1.4 Å. However, our analysis demonstrates that the reported performance of water prediction methods is highly sensitive to the way in which the performance is measured. We also find that crystallographic water sites with more protein/ligand hydrogen bonds and stronger electron density are more reliably predicted by GCMC. An analysis of water networks revealed that more than half of the structures contain at least one ligand-contacting water network. In these cases, displacement of a water site by a ligand modification might yield unexpected results if the larger network is destabilized. Cooperative effects between waters should therefore be explicitly considered in structure-based drug design.
Collapse
Affiliation(s)
- Marley
L. Samways
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Hannah E. Bruce Macdonald
- Computational
and Systems Biology Program, Memorial Sloan
Kettering Cancer Center, New York, New York 10065, United States
| | | | - Jonathan W. Essex
- School
of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K.,
| |
Collapse
|
9
|
Kolocouris A, Arkin I, Glykos NM. A proof-of-concept study of the secondary structure of influenza A, B M2 and MERS- and SARS-CoV E transmembrane peptides using folding molecular dynamics simulations in a membrane mimetic solvent. Phys Chem Chem Phys 2022; 24:25391-25402. [PMID: 36239696 DOI: 10.1039/d2cp02881f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Here, we have carried out a proof-of-concept molecular dynamics (MD) simulation with adaptive tempering in a membrane mimetic environment to study the folding of single-pass membrane peptides. We tested the influenza A M2 viroporin, influenza B M2 viroporin, and protein E from coronaviruses MERS-Cov-2 and SARS-CoV-2 peptides with known experimental secondary structures in membrane bilayers. The two influenza-derived peptides are significantly different in the peptide sequence and secondary structure and more polar than the two coronavirus-derived peptides. Through a total of more than 50 μs of simulation time that could be accomplished in trifluoroethanol (TFE), as a membrane model, we characterized comparatively the folding behavior, helical stability, and helical propensity of these transmembrane peptides that match perfectly their experimental secondary structures, and we identified common motifs that reflect their quaternary organization and known (or not) biochemical function. We showed that BM2 is organized into two structurally distinct parts: a significantly more stable N-terminal half, and a fast-converting C-terminal half that continuously folds and unfolds between α-helical structures and non-canonical structures, which are mostly turns. In AM2, both the N-terminal half and C-terminal half are very flexible. In contrast, the two coronavirus-derived transmembrane peptides are much more stable and fast helix-formers when compared with the influenza ones. In particular, the SARS-derived peptide E appears to be the fastest and most stable helix-former of all the four viral peptides studied, with a helical structure that persists almost without disruption for the whole of its 10 μs simulation. By comparing the results with experimental observations, we benchmarked TFE in studying the conformation of membrane and hydrophobic peptides. This work provided accurate results suggesting a methodology to run long MD simulations and predict structural properties of biologically important membrane peptides.
Collapse
Affiliation(s)
- Antonios Kolocouris
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Greece.
| | - Isaiah Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, 91904, Israel
| | - Nicholas M Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus, Alexandroupolis, 68100, Greece.
| |
Collapse
|
10
|
Optimized POCl3-assisted synthesis of 2-amino-1,3,4-thiadiazole/1,3,4-oxadiazole derivatives as anti-influenza agents. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103712] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
11
|
Aledavood E, Selmi B, Estarellas C, Masetti M, Luque FJ. From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus. Front Mol Biosci 2022; 8:796229. [PMID: 35096969 PMCID: PMC8795881 DOI: 10.3389/fmolb.2021.796229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/24/2021] [Indexed: 11/26/2022] Open
Abstract
With an estimated 1 billion people affected across the globe, influenza is one of the most serious health concerns worldwide. Therapeutic treatments have encompassed a number of key functional viral proteins, mainly focused on the M2 proton channel and neuraminidase. This review highlights the efforts spent in targeting the M2 proton channel, which mediates the proton transport toward the interior of the viral particle as a preliminary step leading to the release of the fusion peptide in hemagglutinin and the fusion of the viral and endosomal membranes. Besides the structural and mechanistic aspects of the M2 proton channel, attention is paid to the challenges posed by the development of efficient small molecule inhibitors and the evolution toward novel ligands and scaffolds motivated by the emergence of resistant strains.
Collapse
Affiliation(s)
- Elnaz Aledavood
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Beatrice Selmi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum – Università di Bologna, Bologna, Italy
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| | - F. Javier Luque
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Biomedicina and Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
- *Correspondence: Carolina Estarellas, ; Matteo Masetti, ; F. Javier Luque,
| |
Collapse
|
12
|
Kratochvil HT, Newberry RW, Mensa B, Mravic M, DeGrado WF. Spiers Memorial Lecture: Analysis and de novo design of membrane-interactive peptides. Faraday Discuss 2021; 232:9-48. [PMID: 34693965 PMCID: PMC8979563 DOI: 10.1039/d1fd00061f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Membrane-peptide interactions play critical roles in many cellular and organismic functions, including protection from infection, remodeling of membranes, signaling, and ion transport. Peptides interact with membranes in a variety of ways: some associate with membrane surfaces in either intrinsically disordered conformations or well-defined secondary structures. Peptides with sufficient hydrophobicity can also insert vertically as transmembrane monomers, and many associate further into membrane-spanning helical bundles. Indeed, some peptides progress through each of these stages in the process of forming oligomeric bundles. In each case, the structure of the peptide and the membrane represent a delicate balance between peptide-membrane and peptide-peptide interactions. We will review this literature from the perspective of several biologically important systems, including antimicrobial peptides and their mimics, α-synuclein, receptor tyrosine kinases, and ion channels. We also discuss the use of de novo design to construct models to test our understanding of the underlying principles and to provide useful leads for pharmaceutical intervention of diseases.
Collapse
Affiliation(s)
- Huong T Kratochvil
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Robert W Newberry
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Bruk Mensa
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| | - Marco Mravic
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California - San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|