1
|
Fuller KB, Requijo RM, Schneider DA, Lucius AL. NTPs compete in the active site of RNA polymerases I and II. Biophys Chem 2024; 314:107302. [PMID: 39180852 PMCID: PMC11401760 DOI: 10.1016/j.bpc.2024.107302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
Eukaryotes express at least three RNA polymerases (Pols) carry out transcription, while bacteria and archaea use only one. Using transient state kinetics, we have extensively examined and compared the kinetics of both single and multi-nucleotide additions catalyzed by the three Pols. In single nucleotide addition experiments we have observed unexpected extension products beyond one incorporation, which can be attributed to misincorporation, the presence of nearly undetectable amounts of contaminating NTPs, or a mixture of the two. Here we report the development and validation of an analysis strategy to account for the presence of unexpected extension products, when they occur. Using this approach, we uncovered evidence showing that non-cognate nucleotide, thermodynamically, competes with cognate nucleotide for the active site within the elongation complex of Pol I, ΔA12 Pol I, and Pol II. This observation is unexpected because base pairing interactions provide favorable energetics for selectivity and competitive binding indicates that the affinities of cognate and non-cognate nucleotides are within an order of magnitude. Thus, we show that application of our approach will allow for the extraction of additional information that reports on the energetics of nucleotide entry and selectivity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ryan M Requijo
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
2
|
Duan B, Qiu C, Lockless SW, Sze SH, Kaplan CD. Higher-order epistasis within Pol II trigger loop haplotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576280. [PMID: 38293233 PMCID: PMC10827151 DOI: 10.1101/2024.01.20.576280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL for the purpose of understand functional interactions between residues and to understand how individual mutants might alter TL function. We identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating species-specific interactions between otherwise highly conserved TLs and its surroundings. These interactions represent epistasis between TL residues and the rest of Pol II. We sought to understand why certain TL sequences are incompatible with S. cerevisiae Pol II and to dissect the nature of genetic interactions within multiply substituted TLs as a window on higher order epistasis in this system. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Steve W Lockless
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Sing-Hoi Sze
- Department of Computer Science & Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
3
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA polymerase II substrate binding and metal coordination using a free-electron laser. Proc Natl Acad Sci U S A 2024; 121:e2318527121. [PMID: 39190355 PMCID: PMC11388330 DOI: 10.1073/pnas.2318527121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024] Open
Abstract
Catalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive. Here, we present the free-electron laser (FEL) structures of a matched ATP-bound Pol II and the hyperactive Rpb1 T834P bridge helix (BH) mutant at the highest resolution to date. The radiation-damage-free FEL structures reveal the full active site interaction network, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and, more importantly, a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structures indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/BH interactions induce conformational changes that could allow translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the T834P mutant reveal rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Christopher O. Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI48824
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Aina E. Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA94025
| | - Craig D. Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
4
|
Kuldell JC, Kaplan CD. RNA Polymerase II Activity Control of Gene Expression and Involvement in Disease. J Mol Biol 2024:168770. [PMID: 39214283 DOI: 10.1016/j.jmb.2024.168770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Gene expression is dependent on RNA Polymerase II (Pol II) activity in eukaryotes. In addition to determining the rate of RNA synthesis for all protein coding genes, Pol II serves as a platform for the recruitment of factors and regulation of co-transcriptional events, from RNA processing to chromatin modification and remodeling. The transcriptome can be shaped by changes in Pol II kinetics affecting RNA synthesis itself or because of alterations to co-transcriptional events that are responsive to or coupled with transcription. Genetic, biochemical, and structural approaches to Pol II in model organisms have revealed critical insights into how Pol II works and the types of factors that regulate it. The complexity of Pol II regulation generally increases with organismal complexity. In this review, we describe fundamental aspects of how Pol II activity can shape gene expression, discuss recent advances in how Pol II elongation is regulated on genes, and how altered Pol II function is linked to human disease and aging.
Collapse
Affiliation(s)
- James C Kuldell
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States
| | - Craig D Kaplan
- Department of Biological Sciences, 202A LSA, Fifth and Ruskin Avenues, University of Pittsburgh, Pittsburgh PA 15260, United States.
| |
Collapse
|
5
|
Fang C, Huang K, Wu X, Zhang H, Gu Z, Wang J, Zhang Y. Transcription elongation of the plant RNA polymerase IV is prone to backtracking. SCIENCE ADVANCES 2024; 10:eadq3087. [PMID: 39178250 PMCID: PMC11343019 DOI: 10.1126/sciadv.adq3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024]
Abstract
RNA polymerase IV (Pol IV) forms a complex with RNA-directed RNA polymerase 2 (RDR2) to produce double-stranded RNA (dsRNA) precursors essential for plant gene silencing. In the "backtracking-triggered RNA channeling" model, Pol IV backtracks and delivers its transcript's 3' terminus to RDR2, which synthesizes dsRNA. However, the mechanisms underlying Pol IV backtracking and RNA protection from cleavage are unclear. Here, we determined cryo-electron microscopy structures of Pol IV elongation complexes at four states of its nucleotide addition cycle (NAC): posttranslocation, guanosine triphosphate-bound, pretranslocation, and backtracked states. The structures reveal that Pol IV maintains an open DNA cleft and kinked bridge helix in all NAC states, loosely interacts with the nucleoside triphosphate substrate, and barely contacts proximal backtracked nucleotides. Biochemical data indicate that Pol IV is inefficient in forward translocation and RNA cleavage. These findings suggest that Pol IV transcription elongation is prone to backtracking and incapable of RNA hydrolysis, ensuring efficient dsRNA production by Pol IV-RDR2.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Huang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hongwei Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Fuller KB, Jacobs RQ, Schneider DA, Lucius AL. Reversible Kinetics in Multi-nucleotide Addition Catalyzed by S. cerevisiae RNA polymerase II Reveal Slow Pyrophosphate Release. J Mol Biol 2024; 436:168606. [PMID: 38729258 PMCID: PMC11162919 DOI: 10.1016/j.jmb.2024.168606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Eukaryotes express at least three nuclear DNA dependent RNA polymerases (Pols). Pols I, II, and III synthesize ribosomal (r) RNA, messenger (m) RNA, and transfer (t) RNA, respectively. Pol I and Pol III have intrinsic nuclease activity conferred by the A12.2 and C11 subunits, respectively. In contrast, Pol II requires the transcription factor (TF) IIS to confer robust nuclease activity. We recently reported that in the absence of the A12.2 subunit Pol I reverses bond formation by pyrophosphorolysis in the absence of added PPi, indicating slow PPi release. Thus, we hypothesized that Pol II, naturally lacking TFIIS, would reverse bond formation through pyrophosphorolysis. Here we report the results of transient-state kinetic experiments to examine the addition of nine nucleotides to a growing RNA chain catalyzed by Pol II. Our results indicate that Pol II reverses bond formation by pyrophosphorolysis in the absence of added PPi. We propose that, in the absence of endonuclease activity, this bond reversal may represent kinetic proofreading. Thus, given the hypothesis that Pol I evolved from Pol II through the incorporation of general transcription factors, pyrophosphorolysis may represent a more ancient form of proofreading that has been evolutionarily replaced with nuclease activity.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
7
|
Lin G, Barnes CO, Weiss S, Dutagaci B, Qiu C, Feig M, Song J, Lyubimov A, Cohen AE, Kaplan CD, Calero G. Structural basis of transcription: RNA Polymerase II substrate binding and metal coordination at 3.0 Å using a free-electron laser. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.22.559052. [PMID: 37790421 PMCID: PMC10543002 DOI: 10.1101/2023.09.22.559052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Catalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive. Here we present the free electron laser (FEL) structure of a matched ATP-bound Pol II, revealing the full active site interaction network at the highest resolution to date, including the trigger loop (TL) in the closed conformation, bonafide occupancy of both site A and B Mg2+, and a putative third (site C) Mg2+ analogous to that described for some DNA polymerases but not observed previously for cellular RNA polymerases. Molecular dynamics (MD) simulations of the structure indicate that the third Mg2+ is coordinated and stabilized at its observed position. TL residues provide half of the substrate binding pocket while multiple TL/bridge helix (BH) interactions induce conformational changes that could propel translocation upon substrate hydrolysis. Consistent with TL/BH communication, a FEL structure and MD simulations of the hyperactive Rpb1 T834P bridge helix mutant reveals rearrangement of some active site interactions supporting potential plasticity in active site function and long-distance effects on both the width of the central channel and TL conformation, likely underlying its increased elongation rate at the expense of fidelity.
Collapse
Affiliation(s)
- Guowu Lin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Christopher O Barnes
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena CA 91125 USA
| | - Simon Weiss
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| | - Bercem Dutagaci
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston MA 02115 USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing MI 48824 USA
| | - Jihnu Song
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Artem Lyubimov
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Aina E Cohen
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Craig D Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260 USA
| | - Guillermo Calero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261 USA
| |
Collapse
|
8
|
Duan B, Qiu C, Sze SH, Kaplan C. Widespread epistasis shapes RNA Polymerase II active site function and evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530048. [PMID: 36909581 PMCID: PMC10002619 DOI: 10.1101/2023.02.27.530048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Multi-subunit RNA Polymerases (msRNAPs) are responsible for transcription in all kingdoms of life. At the heart of these msRNAPs is an ultra-conserved active site domain, the trigger loop (TL), coordinating transcription speed and fidelity by critical conformational changes impacting multiple steps in substrate selection, catalysis, and translocation. Previous studies have observed several different types of genetic interactions between eukaryotic RNA polymerase II (Pol II) TL residues, suggesting that the TL's function is shaped by functional interactions of residues within and around the TL. The extent of these interaction networks and how they control msRNAP function and evolution remain to be determined. Here we have dissected the Pol II TL interaction landscape by deep mutational scanning in Saccharomyces cerevisiae Pol II. Through analysis of over 15000 alleles, representing all single mutants, a rationally designed subset of double mutants, and evolutionarily observed TL haplotypes, we identify interaction networks controlling TL function. Substituting residues creates allele-specific networks and propagates epistatic effects across the Pol II active site. Furthermore, the interaction landscape further distinguishes alleles with similar growth phenotypes, suggesting increased resolution over the previously reported single mutant phenotypic landscape. Finally, co-evolutionary analyses reveal groups of co-evolving residues across Pol II converge onto the active site, where evolutionary constraints interface with pervasive epistasis. Our studies provide a powerful system to understand the plasticity of RNA polymerase mechanism and evolution, and provide the first example of pervasive epistatic landscape in a highly conserved and constrained domain within an essential enzyme.
Collapse
Affiliation(s)
- Bingbing Duan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Chenxi Qiu
- Department of Genetics, Harvard Medical School, Boston, MA 02215
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843
| | - Craig Kaplan
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| |
Collapse
|
9
|
Unarta IC, Goonetilleke EC, Wang D, Huang X. Nucleotide addition and cleavage by RNA polymerase II: Coordination of two catalytic reactions using a single active site. J Biol Chem 2022; 299:102844. [PMID: 36581202 PMCID: PMC9860460 DOI: 10.1016/j.jbc.2022.102844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
RNA polymerase II (Pol II) incorporates complementary ribonucleotides into the growing RNA chain one at a time via the nucleotide addition cycle. The nucleotide addition cycle, however, is prone to misincorporation of noncomplementary nucleotides. Thus, to ensure transcriptional fidelity, Pol II backtracks and then cleaves the misincorporated nucleotides. These two reverse reactions, nucleotide addition and cleavage, are catalyzed in the same active site of Pol II, which is different from DNA polymerases or other endonucleases. Recently, substantial progress has been made to understand how Pol II effectively performs its dual role in the same active site. Our review highlights these recent studies and provides an overall model of the catalytic mechanisms of Pol II. In particular, RNA extension follows the two-metal-ion mechanism, and several Pol II residues play important roles to facilitate the catalysis. In sharp contrast, the cleavage reaction is independent of any Pol II residues. Interestingly, Pol II relies on its residues to recognize the misincorporated nucleotides during the backtracking process, prior to cleavage. In this way, Pol II efficiently compartmentalizes its two distinct catalytic functions using the same active site. Lastly, we also discuss a new perspective on the potential third Mg2+ in the nucleotide addition and intrinsic cleavage reactions.
Collapse
Affiliation(s)
- Ilona Christy Unarta
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eshani C Goonetilleke
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dong Wang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, California, USA; Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.
| | - Xuhui Huang
- Department of Chemistry, Theoretical Chemistry Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|