1
|
Nihara R, Saito K, Kuroda H, Komatsu Y, Chen Y, Ishikita H, Takahashi Y. D1-Tyr246 and D2-Tyr244 in photosystem II: Insights into bicarbonate binding and electron transfer from Q A•- to Q B. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149507. [PMID: 39218331 DOI: 10.1016/j.bbabio.2024.149507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
In photosystem II (PSII), D1-Tyr246 and D2-Tyr244 are symmetrically located at the binding site of the bicarbonate ligand of the non-heme Fe complex. Here, we investigated the role of the symmetrically arranged tyrosine pair, D1-Tyr246 and D2-Tyr244, in the function of PSII, by generating four chloroplast mutants of PSII from Chlamydomonas reinhardtii: D1-Y246F, D1-Y246T, D2-Y244F, and D2-Y244T. The mutants exhibited altered photoautotrophic growth, reduced PSII protein accumulation, and impaired O2-evolving activity. Flash-induced fluorescence yield decay kinetics indicated a significant slowdown in electron transfer from QA•- to QB in all mutants. Bicarbonate reconstitution resulted in enhanced O2-evolving activity, suggesting destabilization of bicarbonate binding in the mutants. Structural analyses based on a quantum mechanical/molecular mechanical approach identified the existence of a water channel that leads to incorporation of bulk water molecules and destabilization of the bicarbonate binding site. The water intake channels, crucial for bicarbonate stability, exhibited distinct paths in the mutants. These findings shed light on the essential role of the tyrosine pair in maintaining bicarbonate stability and facilitating efficient electron transfer in native PSII.
Collapse
Affiliation(s)
- Ruri Nihara
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Kuroda
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yasuto Komatsu
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yang Chen
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8654, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Yuichiro Takahashi
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Khaing EP, Eaton-Rye JJ. Lys264 of the D2 Protein Performs a Dual Role in Photosystem II Modifying Assembly and Electron Transfer through the Quinone-Iron Acceptor Complex. Biochemistry 2023; 62:2738-2750. [PMID: 37606628 DOI: 10.1021/acs.biochem.3c00240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Bicarbonate (HCO3-) binding regulates electron flow between the primary (QA) and secondary (QB) plastoquinone electron acceptors of Photosystem II (PS II). Lys264 of the D2 subunit of PS II contributes to a hydrogen-bond network that stabilizes HCO3- ligation to the non-heme iron in the QA-Fe-QB complex. Using the cyanobacterium Synechocystis sp. PCC 6803, alanine and glutamate were introduced to create the K264A and K264E mutants. Photoautotrophic growth was slowed in K264E cells but not in the K264A strain. Both mutants accumulated an unassembled CP43 precomplex as well as the CP43-lacking RC47 assembly intermediate, indicating weakened binding of the CP43 precomplex to RC47. Assembly was impeded more in K264E cells than in the K264A strain, but K264A cells were more susceptible to high-light-induced photodamage when assayed using PS II-specific electron acceptors. Furthermore, an impaired repair mechanism was observed in the K264A mutant in protein labeling experiments. Unexpectedly, unlike the K264A strain, the K264E mutant displayed inhibited oxygen evolution following high-light exposure when HCO3- was added to support whole chain electron transport. In both mutants, the decay of chlorophyll fluorescence was slowed, indicating impaired electron transfer between QA and QB. Furthermore, the fluorescence decay kinetics in the K264E strain were insensitive to addition of either formate or HCO3-, whereas HCO3--reversible formate-induced inhibition in the K264A mutant was observed. Exchange of plastoquinol with the membrane plastoquinone pool at the QB-binding site was also retarded in both mutants. Hence, D2-Lys264 possesses key roles in both assembly and activity of PS II.
Collapse
Affiliation(s)
- Ei Phyo Khaing
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Sirohiwal A, Pantazis DA. Functional Water Networks in Fully Hydrated Photosystem II. J Am Chem Soc 2022; 144:22035-22050. [PMID: 36413491 PMCID: PMC9732884 DOI: 10.1021/jacs.2c09121] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Water channels and networks within photosystem II (PSII) of oxygenic photosynthesis are critical for enzyme structure and function. They control substrate delivery to the oxygen-evolving center and mediate proton transfer at both the oxidative and reductive endpoints. Current views on PSII hydration are derived from protein crystallography, but structural information may be compromised by sample dehydration and technical limitations. Here, we simulate the physiological hydration structure of a cyanobacterial PSII model following a thorough hydration procedure and large-scale unconstrained all-atom molecular dynamics enabled by massively parallel simulations. We show that crystallographic models of PSII are moderately to severely dehydrated and that this problem is particularly acute for models derived from X-ray free electron laser (XFEL) serial femtosecond crystallography. We present a fully hydrated representation of cyanobacterial PSII and map all water channels, both static and dynamic, associated with the electron donor and acceptor sides. Among them, we describe a series of transient channels and the attendant conformational gating role of protein components. On the acceptor side, we characterize a channel system that is absent from existing crystallographic models but is likely functionally important for the reduction of the terminal electron acceptor plastoquinone QB. The results of the present work build a foundation for properly (re)evaluating crystallographic models and for eliciting new insights into PSII structure and function.
Collapse
|