1
|
Saha J, Wolszczak A, Kaur N, Widanage MCD, McCalpin SD, Fu R, Ali J, Ramamoorthy A. Anionic lipid catalyzes the generation of cytotoxic insulin oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.633028. [PMID: 39868250 PMCID: PMC11761421 DOI: 10.1101/2025.01.14.633028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Misfolding and aggregation of proteins into amyloidogenic assemblies are key features of several metabolic and neurodegenerative diseases. Human insulin has long been known to form amyloid fibrils under various conditions, which affects its bioavailability and function. Clinically, insulin aggregation at recurrent injection sites poses a challenge for diabetic patients who rely on insulin therapy. Furthermore, decreased responsiveness to insulin in type 2 diabetic (T2D) patients may lead to its overproduction and accumulation as aggregates. Earlier reports have reported that various factors such as pH, temperature, agitation, and the presence of lipids or other proteins influence insulin aggregation. Our present study aims to elucidate the effects of non-micellar anionic DMPG (1,2-dimyristoyl-sn-glycero-3-phosphoglycerol) lipids on insulin aggregation. Distinct pathways of insulin aggregation and intermediate formation were observed in the presence of DMPG using a ThT fluorescence assay. The formation of soluble intermediates, alongside large insulin fibrils, was observed in insulin incubated with DMPG via TEM, DLS and NMR, as opposed to insulin aggregates generated without lipids. 13C magic angle spinning solid-state NMR and FTIR experiments indicated that lipids do not alter the conformation of insulin fibrils but do alter the time scale of motion of aromatic and aliphatic sidechains. Furthermore, the soluble intermediates were found to be more cytotoxic as compared to fibrils generated with or without lipids. Overall, our study elucidates the importance of anionic lipids in dictating the pathways and intermediates associated with insulin aggregation. These findings could be useful in determining various approaches to avoid toxicity and enhance the effectiveness of insulin in therapeutic applications.
Collapse
Affiliation(s)
- Jhinuk Saha
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Audrey Wolszczak
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Navneet Kaur
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Malitha C. Dickwella Widanage
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Samuel D McCalpin
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Riqiang Fu
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
| | - Jamel Ali
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| | - Ayyalusamy Ramamoorthy
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, FL 32310, United States
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, 2525 Pottsdamer St., Tallahassee, FL 32310, United States
| |
Collapse
|
2
|
Shimanouchi T, Iwamura M, Sano Y, Hayashi K, Noda M, Kimura Y. Classification of binding property of amyloid β to lipid membranes: Membranomic research using quartz crystal microbalance combined with the immobilization of lipid planar membranes. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2024; 1872:140987. [PMID: 38128808 DOI: 10.1016/j.bbapap.2023.140987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
A biomembrane-related fibrillogenesis of Amyloid β from Alzheimer' disease (Aβ) is closely related to its accumulation behavior. A binding property of Aβ peptides from Alzheimer' disease to lipid membranes was then classified by a quartz crystal microbalance (QCM) method combined with an immobilization technique using thiol self-assembled membrane. The accumulated amounts of Aβ, Δfmax, was determined from the measurement of the maximal frequency reduction using QCM. The plots of Δfmax to Aβ concentration gave the slope and saturated value of Δfmax, (Δfmax)sat that are the parameters for binding property of Aβ to lipid membranes. Therefore, the Aβ-binding property on lipid membranes was classified by the slope and (Δfmax)sat. The plural lipid system was described as X + Y where X = L1, L1/L2, and L1/L2/L3. The slope and (Δfmax)sat values plotted as a function of mixing ratio of Y to X was classified on a basis of the lever principle (LP). The LP violation observed in both parameters resulted from the formation of the crevice or pothole, as Aβ-specific binding site, generated at the boundary between ld and lo phases. The LP violation observed only in the slope resulted from glycolipid-rich domain acting as Aβ-specific binding site. Furthermore, lipid planar membranes indicating strong LP violation favored strong fibrillogenesis. Especially, lipid planar membranes indicating the LP violation only in the slope induced lateral aggregated and spherulitic fibrillar aggregates. Thus, the classification of Aβ binding property on lipid membranes appeared to be related to the fibrillogenesis with a certain morphology.
Collapse
Affiliation(s)
- Toshinori Shimanouchi
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan.
| | - Miki Iwamura
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| | - Yasuhiro Sano
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| | - Keita Hayashi
- National Institute of Technology, Nara College, 22 Yada-cho, Yamatokoriyama, Nara, Japan
| | - Minoru Noda
- Graduate School of Science and Technology, Kyoto Institute of Technology, Sakyo-ku, Kyoto, Japan
| | - Yukitaka Kimura
- Graduate School of Environment and Life Science, Okayama University, 3-1-1 Tsushimanaka, kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
3
|
Ali A, Dou T, Holman AP, Hung A, Osborne L, Pickett D, Rodriguez A, Zhaliazka K, Kurouski D. The influence of zwitterionic and anionic phospholipids on protein aggregation. Biophys Chem 2024; 306:107174. [PMID: 38211368 DOI: 10.1016/j.bpc.2024.107174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
The progressive aggregation of misfolded proteins is the underlying molecular cause of numerous pathologies including Parkinson's disease and injection and transthyretin amyloidosis. A growing body of evidence indicates that protein deposits detected in organs and tissues of patients diagnosed with such pathologies contain fragments of lipid membranes. In vitro experiments also showed that lipid membranes could strongly change the aggregation rate of amyloidogenic proteins, as well as alter the secondary structure and toxicity of oligomers and fibrils formed in their presence. In this review, the effect of large unilamellar vesicles (LUVs) composed of zwitterionic and anionic phospholipids on the aggregation rate of insulin, lysozyme, transthyretin (TTR) and α- synuclein (α-syn) will be discussed. The manuscript will also critically review the most recent findings on the lipid-induced changes in the secondary structure of protein oligomers and fibrils, as well as reveal the extent to which lipids could alter the toxicity of protein aggregates formed in their presence.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Tianyi Dou
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Aidan P Holman
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Entomology, Texas A&M University, College Station, TX 77843, United States
| | - Andrew Hung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Luke Osborne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Davis Pickett
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
4
|
Nguyen PH, Derreumaux P. Recent Computational Advances Regarding Amyloid-β and Tau Membrane Interactions in Alzheimer's Disease. Molecules 2023; 28:7080. [PMID: 37894559 PMCID: PMC10609340 DOI: 10.3390/molecules28207080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The interactions of amyloid proteins with membranes have been subject to many experimental and computational studies, as these interactions contribute in part to neurodegenerative diseases. In this review, we report on recent simulations that have focused on the adsorption and insertion modes of amyloid-β and tau proteins in membranes. The atomistic-resolution characterization of the conformational changes of these amyloid proteins upon lipid cell membrane and free lipid interactions is of interest to rationally design drugs targeting transient oligomers in Alzheimer's disease.
Collapse
Affiliation(s)
- Phuong H. Nguyen
- CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France;
| | - Philippe Derreumaux
- CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, Université Paris Cité, UPR 9080, 13 rue Pierre et Marie Curie, 75005 Paris, France;
- Institut Universitaire de France (IUF), 75005 Paris, France
| |
Collapse
|
5
|
Kumar M, Ivanova MI, Ramamoorthy A. Non-micellar ganglioside GM1 induces an instantaneous conformational change in Aβ 42 leading to the modulation of the peptide amyloid-fibril pathway. Biophys Chem 2023; 301:107091. [PMID: 37549471 DOI: 10.1016/j.bpc.2023.107091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Alzheimer's disease is a progressive degenerative condition that mainly affects cognition and memory. Recently, distinct clinical and neuropathological phenotypes have been identified in AD. Studies revealed that structural variation in Aβ fibrillar aggregates correlates with distinct disease phenotypes. Moreover, environmental surroundings, including other biomolecules such as proteins and lipids, have been shown to interact and modulate Aβ aggregation. Model membranes containing ganglioside (GM1) clusters are specifically known to promote Aβ fibrillogenesis. This study unravels the modulatory effect of non-micellar GM1, a glycosphingolipid frequently released from the damaged neuronal membranes, on Aβ42 amyloid fibril formation. Using far-UV circular dichroism experiments, we observed a change in the peptide secondary structure from random-coil to β-turn structures with subsequent generation of predominantly β-sheet-rich species upon interaction with GM1. Thioflavin-T (ThT) fluorescence assays further indicated that GM1 likely interacts with an amyloidogenic Aβ42 intermediate species leading to a possible formation of GM1-modified Aβ42 fibril. Statistically, no significant difference in toxicity to RA-differentiated SH-SY5Y cells was observed between Aβ42 fibrils and GM1-tweaked Aβ42 aggregates. Moreover, GM1-modified Aβ42 aggregates exhibited prion-like properties in catalyzing the amyloid fibril formation of both major isomers of Aβ, Aβ40, and Aβ42.
Collapse
Affiliation(s)
- Manjeet Kumar
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Magdalena I Ivanova
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
6
|
Saha J, Ford BJ, Wang X, Boyd S, Morgan SE, Rangachari V. Sugar distributions on gangliosides guide the formation and stability of amyloid-β oligomers. Biophys Chem 2023; 300:107073. [PMID: 37413816 PMCID: PMC10529042 DOI: 10.1016/j.bpc.2023.107073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Aggregation of Aβ peptides is a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, monomeric Aβ is susceptible to conformational excursions, especially in the presence of important interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles do carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aβ N-terminal region modulate oligomerization of Aβ temporally, and dictate the stability and maturation of oligomers. These results demonstrate the selectivity of sugar distributions on the membrane surface toward oligomerization of Aβ and thus implicate cell-selective enrichment of oligomers.
Collapse
Affiliation(s)
- Jhinuk Saha
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA
| | - Brea J Ford
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA
| | | | - Sydney Boyd
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA
| | | | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, 118, College Dr Hattiesburg, MS 39402, USA; Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| |
Collapse
|
7
|
Kumar M, I Ivanova M, Ramamoorthy A. Ganglioside GM1 produces stable, short, and cytotoxic Aβ 40 protofibrils. Chem Commun (Camb) 2023; 59:7040-7043. [PMID: 37204424 PMCID: PMC10266803 DOI: 10.1039/d3cc02186f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Monosialoganglioside GM1-bound amyloid β-peptides have been found in patients' brains exhibiting early pathological changes of Alzheimer's disease. Herein, we report the ability of non-micellar GM1 to modulate Aβ40 aggregation resulting in the formation of stable, short, rod-like, and cytotoxic Aβ40 protofibrils with the ability to potentiate both Aβ40 and Aβ42 aggregation.
Collapse
Affiliation(s)
- Manjeet Kumar
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
8
|
Saha J, Ford BJ, Boyd S, Rangachari V. Sugar distributions on gangliosides guide the formation and stability of amyloid-β oligomers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540003. [PMID: 37214891 PMCID: PMC10197704 DOI: 10.1101/2023.05.09.540003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aggregation of Aβ peptides has been known as a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, the monomeric Aβ is susceptible to conformational excursions, especially in the presence of key interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, key components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles the carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aβ N-terminal region modulate oligomerization of Aβ temporally, and dictate the stability and maturation of oligomers.
Collapse
|