1
|
Wenger ES, Schultz K, Marmorstein R, Christianson DW. Engineering substrate channeling in a bifunctional terpene synthase. Proc Natl Acad Sci U S A 2024; 121:e2408064121. [PMID: 39365814 PMCID: PMC11474042 DOI: 10.1073/pnas.2408064121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024] Open
Abstract
Fusicoccadiene synthase from Phomopsis amygdala (PaFS) is a bifunctional terpene synthase. It contains a prenyltransferase (PT) domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate, and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are connected by a flexible 69-residue linker. The PT domain mediates oligomerization to form predominantly octamers, with cyclase domains randomly splayed out around the PT core. Surprisingly, despite the random positioning of cyclase domains, substrate channeling is operative in catalysis since most of the GGPP generated by the PT remains on the enzyme for cyclization. Here, we demonstrate that covalent linkage of the PT and cyclase domains is not required for GGPP channeling, although covalent linkage may improve channeling efficiency. Moreover, GGPP competition experiments with other diterpene cyclases indicate that the PaFS PT and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryoelectron microscopy structure of the 600-kD "linkerless" construct, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the PT octamer and exhibit fascinating quaternary structural flexibility. These results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the PT octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.
Collapse
Affiliation(s)
- Eliott S. Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA19104-6323
| |
Collapse
|
2
|
Wenger ES, Schultz K, Marmorstein R, Christianson DW. Engineering Substrate Channeling in Assembly-Line Terpene Biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586617. [PMID: 38586022 PMCID: PMC10996616 DOI: 10.1101/2024.03.25.586617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Fusicoccadiene synthase from P. amygdala (PaFS) is a bifunctional assembly-line terpene synthase containing a prenyltransferase domain that generates geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate (DMAPP) and three equivalents of isopentenyl diphosphate (IPP), and a cyclase domain that converts GGPP into fusicoccadiene, a precursor of the diterpene glycoside Fusicoccin A. The two catalytic domains are linked by a flexible 69-residue polypeptide segment. The prenyltransferase domain mediates oligomerization to form predominantly octamers, and cyclase domains are randomly splayed out around the prenyltransferase core. Previous studies suggest that substrate channeling is operative in catalysis, since most of the GGPP formed by the prenyltransferase remains on the protein for the cyclization reaction. Here, we demonstrate that the flexible linker is not required for substrate channeling, nor must the prenyltransferase and cyclase domains be covalently linked to sustain substrate channeling. Moreover, substrate competition experiments with other diterpene cyclases indicate that the PaFS prenyltransferase and cyclase domains are preferential partners regardless of whether they are covalently linked or not. The cryo-EM structure of engineered "linkerless" construct PaFSLL, in which the 69-residue linker is spliced out and replaced with the tripeptide PTQ, reveals that cyclase pairs associate with all four sides of the prenyltransferase octamer. Taken together, these results suggest that optimal substrate channeling is achieved when a cyclase domain associates with the side of the prenyltransferase octamer, regardless of whether the two domains are covalently linked and regardless of whether this interaction is transient or locked in place.
Collapse
Affiliation(s)
- Eliott S. Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA
| |
Collapse
|
3
|
Gaynes MN, Ronnebaum TA, Schultz K, Faylo JL, Marmorstein R, Christianson DW. Structure of the prenyltransferase in bifunctional copalyl diphosphate synthase from Penicillium fellutanum reveals an open hexamer conformation. J Struct Biol 2024; 216:108060. [PMID: 38184156 PMCID: PMC10939776 DOI: 10.1016/j.jsb.2023.108060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Copalyl diphosphate synthase from Penicillium fellutanum (PfCPS) is an assembly-line terpene synthase that contains both prenyltransferase and class II cyclase activities. The prenyltransferase catalyzes processive chain elongation reactions using dimethylallyl diphosphate and three equivalents of isopentenyl diphosphate to yield geranylgeranyl diphosphate, which is then utilized as a substrate by the class II cyclase domain to generate copalyl diphosphate. Here, we report the 2.81 Å-resolution cryo-EM structure of the hexameric prenyltransferase of full-length PfCPS, which is surrounded by randomly splayed-out class II cyclase domains connected by disordered polypeptide linkers. The hexamer can be described as a trimer of dimers; surprisingly, one of the three dimer-dimer interfaces is separated to yield an open hexamer conformation, thus breaking the D3 symmetry typically observed in crystal structures of other prenyltransferase hexamers such as wild-type human GGPP synthase (hGGPPS). Interestingly, however, an open hexamer conformation was previously observed in the crystal structure of D188Y hGGPPS, apparently facilitated by hexamer-hexamer packing in the crystal lattice. The cryo-EM structure of the PfCPS prenyltransferase hexamer is the first to reveal that an open conformation can be achieved even in the absence of a point mutation or interaction with another hexamer. Even though PfCPS octamers are not detected, we suggest that the open hexamer conformation represents an intermediate in the hexamer-octamer equilibrium for those prenyltransferases that do exhibit oligomeric heterogeneity.
Collapse
Affiliation(s)
- Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Trey A Ronnebaum
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Kollin Schultz
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacque L Faylo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA.
| |
Collapse
|
4
|
Gaynes MN, Christianson DW. Methods for the preparation and analysis of a bifunctional class II diterpene synthase, copalyl diphosphate synthase from Penicillium fellutanum. Methods Enzymol 2024; 699:1-23. [PMID: 38942500 PMCID: PMC11213978 DOI: 10.1016/bs.mie.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes comprise the largest class of natural products and are used in applications spanning the areas of medicine, cosmetics, fuels, flavorings, and more. Copalyl diphosphate synthase from the Penicillium genus is the first bifunctional terpene synthase identified to have both prenyltransferase and class II cyclase activities within the same polypeptide chain. Prior studies of bifunctional terpene synthases reveal that these systems achieve greater catalytic efficiency by channeling geranylgeranyl diphosphate between the prenyltransferase and cyclase domains. A molecular-level understanding of substrate transit phenomena in these systems is highly desirable, but a long disordered polypeptide segment connecting the prenyltranferase and cyclase domains thwarts the crystallization of full-length enzymes. Accordingly, these systems are excellent candidates for structural analysis using cryo-electron microscopy (cryo-EM). Notably, these systems form hexameric or octameric oligomers, so the quaternary structure of the full-length enzyme may influence substrate transit between catalytic domains. Here, we describe methods for the preparation of bifunctional hexameric copalyl diphosphate synthase from Penicillium fellutanum (PfCPS). We also outline approaches for the preparation of cryo-EM grids, data collection, and data processing to yield two-dimensional and three-dimensional reconstructions.
Collapse
Affiliation(s)
- Matthew N Gaynes
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Wenger ES, Christianson DW. Methods for the preparation and analysis of the diterpene cyclase fusicoccadiene synthase. Methods Enzymol 2023; 699:89-119. [PMID: 38942517 PMCID: PMC11213977 DOI: 10.1016/bs.mie.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Prenyltransferases are terpene synthases that combine 5-carbon precursor molecules into linear isoprenoids of varying length that serve as substrates for terpene cyclases, enzymes that catalyze fascinating cyclization reactions to form diverse terpene natural products. Terpenes and their derivatives comprise the largest class of natural products and have myriad functions in nature and diverse commercial uses. An emerging class of bifunctional terpene synthases contains both prenyltransferase and cyclase domains connected by a disordered linker in a single polypeptide chain. Fusicoccadiene synthase from Phomopsis amygdali (PaFS) is one of the most well-characterized members of this subclass and serves as a model system for the exploration of structure-function relationships. PaFS has been structurally characterized using a variety of biophysical techniques. The enzyme oligomerizes to form a stable core of six or eight prenyltransferase domains that produce a 20-carbon linear isoprenoid, geranylgeranyl diphosphate (GGPP), which then transits to the cyclase domains for the generation of fusicoccadiene. Cyclase domains are in dynamic equilibrium between randomly splayed-out and prenyltransferase-associated positions; cluster channeling is implicated for GGPP transit from the prenyltransferase core to the cyclase domains. In this chapter, we outline the methods we are developing to interrogate the nature of cluster channeling in PaFS, including enzyme activity and product analysis assays, approaches for engineering the linker segment connecting the prenyltransferase and cyclase domains, and structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Eliott S Wenger
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|