1
|
Barrett SE, Mitchell DA. Advances in lasso peptide discovery, biosynthesis, and function. Trends Genet 2024:S0168-9525(24)00179-3. [PMID: 39218755 DOI: 10.1016/j.tig.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.
Collapse
Affiliation(s)
- Susanna E Barrett
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Chemistry at the University of Illinois Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology at University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Lee H, Park SH, Kim J, Lee J, Koh MS, Lee JH, Kim S. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305946. [PMID: 37987032 PMCID: PMC10787088 DOI: 10.1002/advs.202305946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/12/2023] [Indexed: 11/22/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural products with a distinct biosynthetic logic, the enzymatic modification of genetically encoded precursor peptides. Although their structural and biosynthetic diversity remains largely underexplored, the identification of novel subclasses with unique structural motifs and biosynthetic pathways is challenging. Here, it is reported that peptide/protein L-aspartyl O-methyltransferases (PAMTs) present in several RiPP subclasses are highly homologous. Importantly, it is discovered that the apparent evolutionary transmission of the PAMT gene to unrelated RiPP subclasses can serve as a basis to identify a novel RiPP subclass. Biochemical and structural analyses suggest that homologous PAMTs convert aspartate to isoaspartate via aspartyl-O-methyl ester and aspartimide intermediates, and often require cyclic or hairpin-like structures for modification. By conducting homology-based bioinformatic analysis of PAMTs, over 2,800 biosynthetic gene clusters (BGCs) are identified for known RiPP subclasses in which PAMTs install a secondary modification, and over 1,500 BGCs where PAMTs function as a primary modification enzyme, thereby defining a new RiPP subclass, named pamtides. The results suggest that the genome mining of proteins with secondary biosynthetic roles can be an effective strategy for discovering novel biosynthetic pathways of RiPPs through the principle of "guilt by association".
Collapse
Affiliation(s)
- Hyunbin Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Sho Hee Park
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jiyoon Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jaehak Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Min Sun Koh
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jung Ho Lee
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seokhee Kim
- Department of ChemistrySeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
3
|
Choi B, Acuna A, Koos JD, Link AJ. Large-scale Bioinformatic Study of Graspimiditides and Structural Characterization of Albusimiditide. ACS Chem Biol 2023; 18:2394-2404. [PMID: 37856788 PMCID: PMC10993234 DOI: 10.1021/acschembio.3c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Graspetides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that exhibit an impressive diversity in patterns of side chain-to-side chain ω-ester or ω-amide linkages. Recent studies have uncovered a significant portion of graspetides to contain an additional post-translational modification involving aspartimidylation catalyzed by an O-methyltransferase, predominantly found in the genomes of actinomycetota. Here, we present a comprehensive bioinformatic analysis focused on graspetides harboring aspartimide, for which we propose the name graspimiditides. From protein BLAST results of 5000 methyltransferase sequences, we identified 962 unique putative graspimiditides, which we further classified into eight main clusters based on sequence similarity along with several smaller clusters and singletons. The previously studied graspimiditides, fuscimiditide, and amycolimiditide, are identified in this analysis; fuscimiditide is a singleton, while amycolimiditide is in the fifth largest cluster. Cluster 1, by far the largest cluster, contains 641 members, encoded almost exclusively in the Streptomyces genus. To characterize an example of a graspimiditide in Cluster 1, we conducted experimental studies on the peptide from Streptomyces albus J1074, which we named albusimiditide. By tandem mass spectrometry, hydrazinolysis, and amino acid substitution experiments, we elucidated the structure of albusimiditide to be a large tetracyclic peptide with four ω-ester linkages generating a stem-loop structure with one aspartimide. The ester cross-links form 22-, 46-, 22-, and 44-atom macrocycles, the last of which, the loop, contains the enzymatically installed aspartimide. Further in vitro experiments revealed that the aspartimide hydrolyzes in a 3:1 ratio of isoaspartate to aspartate residues. Overall, this study offers comprehensive insight into the diversity and structural features of graspimiditides, paving the way for future investigations of this unique class of natural products.
Collapse
Affiliation(s)
- Brian Choi
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Arthur Acuna
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Joseph D. Koos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
4
|
Cao L, Do T, Zhu A, Duan J, Alam N, Link AJ. Genome Mining and Discovery of Imiditides, a Family of RiPPs with a Class-Defining Aspartimide Modification. J Am Chem Soc 2023; 145:18834-18845. [PMID: 37595015 PMCID: PMC10947588 DOI: 10.1021/jacs.3c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large and diverse class of natural products of ribosomal origin. In the past decade, various sophisticated machine-learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Here, we show that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds, providing a complementary approach for novel RiPP discovery. Leveraging the fact that O-methyltransferases homologous to protein isoaspartyl methyltransferases (PIMTs) are associated with lasso peptide, graspetide, and lanthipeptide biosynthetic gene clusters (BGCs), we utilized a C-terminal motif unique to RiPP-associated O-methyltransferases as the search query to discover a novel family of RiPPs, the imiditides. Our genome-mining algorithm reveals a total of 670 imiditide BGCs, distributed across Gram-positive bacterial genomes. In addition, we demonstrate the heterologous production of the founding member of the imiditide family, mNmaAM, encoded in the genome of Nonomuraea maritima. In contrast to other RiPP-associated PIMTs that recognize constrained peptides as substrates, the PIMT homologue in the mNmaAM BGC, NmaM, methylates a specific Asp residue on the linear precursor peptide, NmaA. The methyl ester is then turned into an aspartimide spontaneously. Substrate specificity is achieved by extensive charge-charge interactions between the precursor NmaA and the modifying enzyme NmaM suggested by both experiments and an AlphaFold model prediction. Our study shows that PIMT-mediated aspartimide formation is an emerging backbone modification strategy in the biosynthesis of multiple RiPP families.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Angela Zhu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - Jianshu Duan
- Department of Geosciences, Princeton University, Princeton, NJ 08544, United States
| | - Nathan Alam
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
| | - A. James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| |
Collapse
|
5
|
Cao L, Do T, Zhu AD, Alam N, Link AJ. Genome Mining and Discovery of Imiditides, a Novel Family of RiPPs with a Class-defining Aspartimide Modification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536058. [PMID: 37066262 PMCID: PMC10104114 DOI: 10.1101/2023.04.07.536058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a fascinating class of natural products of ribosomal origins. In the past decade, various sophisticated machine learning-based software packages have been established to discover novel RiPPs that do not resemble the known families. Instead, we argue that tailoring enzymes that cluster with various RiPP families can serve as effective bioinformatic seeds for novel RiPP discovery. Leveraging that O -methyltransferases homologous to protein isoaspartyl methyltransferases (PIMTs) are associated with lasso peptide, graspetide, and lanthipeptide biosynthetic gene clusters (BGCs), we utilized the C-terminal motif unique to RiPP-associated O -methyltransferases as the search query to discover a novel family of RiPPs, imiditides. Our genome-mining algorithm reveals a total of 670 imiditide BGCs, widely distributed in Gram-positive bacterial genomes. In addition, we demonstrate the heterologous production of the founding member of the imiditide family, mNmaA M , encoded in the genome of Nonomuraea maritima . In contrast to other RiPP associated PIMTs that recognize constrained peptides as substrates, the PIMT homolog in mNmaA M BGC, NmaM, methylates a specific Asp residue on the linear precursor peptide, NmaA. The methyl ester is then turned into an aspartimide spontaneously. The aspartimide moiety formed is unusually stable, leading to the accumulation of the aspartimidylated product in vivo . The substrate specificity is achieved by extensive charge-charge interactions between the precursor NmaA and the modifying enzyme NmaM suggested by both experimental validations as well as an AlphaFold model prediction. Our study suggests that PIMT-mediated aspartimide formation is an underappreciated backbone modification strategy in RiPP biosynthesis, compared to the well-studied backbone rigidification chemistries, such as thiazol(in)e and oxazol(in)e formations. Additionally, our findings suggest that aspartimide formation in Gram-positive bacterial proteomes are not limited to spontaneous protein aging and degradation. TOC Figure
Collapse
|