1
|
Villamil V, Rossi MA, Mojica MF, Hinchliffe P, Martínez V, Castillo V, Saiz C, Banchio C, Macías MA, Spencer J, Bonomo RA, Vila A, Moreno DM, Mahler G. Rational Design of Benzobisheterocycle Metallo-β-Lactamase Inhibitors: A Tricyclic Scaffold Enhances Potency against Target Enzymes. J Med Chem 2024; 67:3795-3812. [PMID: 38373290 PMCID: PMC11447740 DOI: 10.1021/acs.jmedchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Antimicrobial resistance is a global public health threat. Metallo-β-lactamases (MBLs) inactivate β-lactam antibiotics, including carbapenems, are disseminating among Gram-negative bacteria, and lack clinically useful inhibitors. The evolving bisthiazolidine (BTZ) scaffold inhibits all three MBL subclasses (B1-B3). We report design, synthesis, and evaluation of BTZ analogues. Structure-activity relationships identified the BTZ thiol as essential, while carboxylate is replaceable, with its removal enhancing potency by facilitating hydrophobic interactions within the MBL active site. While the introduction of a flexible aromatic ring is neutral or detrimental for inhibition, a rigid (fused) ring generated nM benzobisheterocycle (BBH) inhibitors that potentiated carbapenems against MBL-producing strains. Crystallography of BBH:MBL complexes identified hydrophobic interactions as the basis of potency toward B1 MBLs. These data underscore BTZs as versatile, potent broad-spectrum MBL inhibitors (with activity extending to enzymes refractory to other inhibitors) and provide a rational approach to further improve the tricyclic BBH scaffold.
Collapse
Affiliation(s)
- Valentina Villamil
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
| | - Maria F. Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, UK
| | - Verónica Martínez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Valerie Castillo
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
| | - Mario A. Macías
- Crystallography and Chemistry of Materials, CrisQuimMat, Department of Chemistry, Universidad de los Andes, 111711, Bogotá, Colombia
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, BS8 1TD, Bristol, UK
| | - Robert A. Bonomo
- Infectious Diseases Department, School of Medicine, Case Western Reserve University, 44106, Cleveland, OH, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 44106, Cleveland, OH, USA
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), 44106, Cleveland, OH, USA
| | - Alejandro Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 44106, Cleveland, OH, USA
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK, Rosario, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Ocampo y Esmeralda, S2002LRK, Rosario, Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR), Avda. General Flores 2124, Montevideo, Uruguay
| |
Collapse
|
2
|
Ono D, Mojica MF, Bethel CR, Ishii Y, Drusin SI, Moreno DM, Vila AJ, Bonomo RA. Structural role of K224 in taniborbactam inhibition of NDM-1. Antimicrob Agents Chemother 2024; 68:e0133223. [PMID: 38174924 PMCID: PMC10848753 DOI: 10.1128/aac.01332-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Taniborbactam (TAN; VNRX-5133) is a novel bicyclic boronic acid β-lactamase inhibitor (BLI) being developed in combination with cefepime (FEP). TAN inhibits both serine and some metallo-β-lactamases. Previously, the substitution R228L in VIM-24 was shown to increase activity against oxyimino-cephalosporins like FEP and ceftazidime (CAZ). We hypothesized that substitutions at K224, the homologous position in NDM-1, could impact FEP/TAN resistance. To evaluate this, a library of codon-optimized NDM K224X clones for minimum inhibitory concentration (MIC) measurements was constructed; steady-state kinetics and molecular docking simulations were next performed. Surprisingly, our investigation revealed that the addition of TAN restored FEP susceptibility only for NDM-1, as the MICs for the other 19 K224X variants remained comparable to those of FEP alone. Moreover, compared to NDM-1, all K224X variants displayed significantly lower MICs for imipenem, tebipenem, and cefiderocol (32-, 133-, and 33-fold lower, respectively). In contrast, susceptibility to CAZ was mostly unaffected. Kinetic assays with the K224I variant, the only variant with hydrolytic activity to FEP comparable to NDM-1, confirmed that the inhibitory capacity of TAN was modestly compromised (IC50 0.01 µM vs 0.14 µM for NDM-1). Lastly, structural modeling and docking simulations of TAN in NDM-1 and in the K224I variant revealed that the hydrogen bond between TAN's carboxylate with K224 is essential for the productive binding of TAN to the NDM-1 active site. In addition to the report of NDM-9 (E149K) as FEP/TAN resistant, this study demonstrates the fundamental role of single amino acid substitutions in the inhibition of NDM-1 by TAN.
Collapse
Affiliation(s)
- Daisuke Ono
- Department of Medicine, Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Maria F. Mojica
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Yoshikazu Ishii
- Department of Microbiology and Infectious Disease, Toho University School of Medicine, Tokyo, Japan
| | - Salvador I. Drusin
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario (IQUIR), CONICET, Rosario, Argentina
| | - Diego M. Moreno
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Química Rosario (IQUIR), CONICET, Rosario, Argentina
| | - Alejandro J. Vila
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Robert A. Bonomo
- Department of Medicine, Division of Infectious Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Bersani M, Failla M, Vascon F, Gianquinto E, Bertarini L, Baroni M, Cruciani G, Verdirosa F, Sannio F, Docquier JD, Cendron L, Spyrakis F, Lazzarato L, Tondi D. Structure-Based Optimization of 1,2,4-Triazole-3-Thione Derivatives: Improving Inhibition of NDM-/VIM-Type Metallo-β-Lactamases and Synergistic Activity on Resistant Bacteria. Pharmaceuticals (Basel) 2023; 16:1682. [PMID: 38139809 PMCID: PMC10747250 DOI: 10.3390/ph16121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023] Open
Abstract
The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-β-lactamases (MBLs) menace the efficacy of all β-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.
Collapse
Affiliation(s)
- Matteo Bersani
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Mariacristina Failla
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Filippo Vascon
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy; (F.V.); (L.C.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Laura Bertarini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
| | - Massimo Baroni
- Kinetic Business Centre, Molecular Discovery Ltd., Elstree, Borehamwood, Hertfordshire WD6 4PJ, UK;
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, Università Degli Studi di Perugia, Via Elce di Sotto, 06132 Perugia, Italy;
| | - Federica Verdirosa
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.V.); (F.S.); (J.-D.D.)
| | - Filomena Sannio
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.V.); (F.S.); (J.-D.D.)
| | - Jean-Denis Docquier
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (F.V.); (F.S.); (J.-D.D.)
- Laboratoire de Bactériologie Moléculaire, Centre d’Ingénierie des Protéines-InBioS, Université de Liège, B-4000 Liège, Belgium
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy; (F.V.); (L.C.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (M.B.); (M.F.); (E.G.); (F.S.)
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
| |
Collapse
|
4
|
Wang N, Lei T, Zhu Y, Li Y, Cai H, Zhang P, Leptihn S, Zhou J, Ke H, Gao B, Feng Y, Hua X, Qu T. Characterization of two novel VIM-type metallo-β-lactamases, VIM-84 and VIM-85, associated with the spread of IncP-2 megaplasmids in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0154423. [PMID: 37707305 PMCID: PMC10580930 DOI: 10.1128/spectrum.01544-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/17/2023] [Indexed: 09/15/2023] Open
Abstract
This study aimed to characterize two novel VIM-type metallo-β-lactamases, VIM-84 and VIM-85, and reveal the important role of the IncP-2 type megaplasmids in the spread of antimicrobial resistance (AMR) genes. VIM-84 and VIM-85 were encoded by two novel genes bla VIM-84 and bla VIM-85 which showed similarity to bla VIM-24. Both bla VIM-84 and bla VIM-85 are harbored into class 1 integrons embedded into the Tn1403 transposon. The bla VIM-85 gene was identified in a megaplasmid, which was related to 17 megaplasmid sequences with sizes larger than 430 kb, deposited previously in Genbank. A comparative analysis of complete plasmid sequences showed highly similar backbone regions and various AMR genes. A phylogenetic tree revealed that these megaplasmids, which were widely distributed globally, were vehicles for the spread of AMR genes. The bla VIM-24, bla VIM-84, and bla VIM-85 genes were cloned into pGK1900, and the recombinant vectors were further transformed into Escherichia coli DH5α and Pseudomonas aeruginosa PAO1. The antimicrobial susceptibility test of the cloning strains showed high levels of resistance to β-lactams while they remained susceptible to aztreonam. Enzymatic tests revealed that both, VIM-84 and VIM-85, exhibited higher activity in hydrolyzing β-lactams compared to VIM-24. A D117N mutation found in VIM-24 affected binding to the antibiotics. IMPORTANCE The metallo-β-lactamases-producing Pseudomonas aeruginosa strains play an important role in hospital outbreaks and the VIM-type enzyme is the most prevalent in European countries. Two novel VIM-type enzymes in our study, VIM-84 and VIM-85, have higher levels of resistance to β-lactams and greater hydrolytic activities for most β-lactams compared with VIM-24. Both bla VIM-84 and bla VIM-85 are harbored into class 1 integrons embedded into the Tn1403 transposon. Notably, the genes bla VIM-85 are carried by three different IncP-2-type megaplasmids which are distributed locally and appear responsible for the spread of antimicrobial resistance genes in hospital settings.
Collapse
Affiliation(s)
- Nanfei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tailong Lei
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiwei Zhu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Li
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Cai
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Piaopiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sebastian Leptihn
- Department of Biochemistry, Health and Medical University, Erfurt, Germany
- Department of Antimicrobial Biotechnology, Fraunhofer Institute for Cell Therapy & Immunology, Leipzig, Germany
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huanhuan Ke
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Gao
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
- Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang, China
| | - Tingting Qu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Hishinuma T, Tada T, Tohya M, Shintani M, Suzuki M, Shimojima M, Kirikae T. Plasmids Harboring a Tandem Duplicate of blaVIM-24 in Carbapenem-Resistant ST1816 Pseudomonas aeruginosa in Japan. Microb Drug Resist 2023; 29:10-17. [PMID: 36378829 DOI: 10.1089/mdr.2022.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to clarify the biological and clinical significance of a tandem duplicate of blaVIM-24 in Pseudomonas aeruginosa ST1816 isolates. Thirteen ST1816 isolates carrying a plasmid harboring blaVIMs were obtained from two medical settings in Japan between 2016 and 2019. Complete sequencing revealed that, of the 13 plasmids, four had a tandem duplicate of blaVIM-24. These four plasmids harbored a replicon, a relaxase gene, and T4SS genes belonging to IncP-9, MOBF, and MPFT, respectively. All four plasmids transferred to PAO1 by filter mating. Cefepime marginally affected the growth of PAO1, carrying a pUCP19 harboring the tandem duplicate. Western blotting analysis showed that the relative intensity of VIM-24 metallo-β-lactamase produced by a PAO1 transformant containing a tandem duplicate was 2.6-fold higher than that produced by a PAO1 transformant containing a single copy. These results suggest that the tandem duplicate of blaVIM-24 in plasmids may confer resistance against cefepime, enabling P. aeruginosa ST1816 strains to proliferate in hospitals in Japan.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mari Tohya
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Japan Collection of Microorganisms, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Villamil V, Saiz C, Mahler G. Thioester deprotection using a biomimetic NCL approach. Front Chem 2022; 10:934376. [PMID: 36072700 PMCID: PMC9441695 DOI: 10.3389/fchem.2022.934376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
The reversibility of the thiol-thioester linkage has been broadly employed in many fields of biochemistry (lipid synthesis) and chemistry (dynamic combinatorial chemistry and material science). When the transthioesterification is followed by a S-to-N acyl transfer to give an amide bond, it is called Native Chemical Ligation (NCL), a high-yield chemoselective process used for peptide synthesis. Recently, we described thioglycolic acid (TGA) as a useful reagent for thioester deprotection both in solution and anchored to a solid-support under mild conditions. Inspired by NCL, in this work, we extended this approach and explored the use of 2-aminothiols for the deprotection of thiols bearing an acyl group. The best results were obtained using cysteamine or L-cysteine in an aqueous buffer pH 8 at room temperature for 30 min. The described approach was useful for S-acetyl, S-butyryl, and S-benzoyl heterocycles deprotection with yields up to 84%. Employing this methodology, we prepared six new analogs 2 of mercaptomethyl bisthiazolidine 1, a useful inhibitor of a wide-range of Metallo-β-Lactamases (MBLs). Compared with the previous methodologies (TGA polymer supported and TGA in solution), the biomimetic deprotection herein described presents better performance with higher yields, shorter reaction times, less time-consuming operations, easier setup, and lower costs.
Collapse
Affiliation(s)
- Valentina Villamil
- Laboratorio de Química Farmacéutica (DQO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica (DQO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica (DQO), Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
7
|
Iqbal Z, Sun J, Yang H, Ji J, He L, Zhai L, Ji J, Zhou P, Tang D, Mu Y, Wang L, Yang Z. Recent Developments to Cope the Antibacterial Resistance via β-Lactamase Inhibition. Molecules 2022; 27:3832. [PMID: 35744953 PMCID: PMC9227086 DOI: 10.3390/molecules27123832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
Antibacterial resistance towards the β-lactam (BL) drugs is now ubiquitous, and there is a major global health concern associated with the emergence of new β-lactamases (BLAs) as the primary cause of resistance. In addition to the development of new antibacterial drugs, β-lactamase inhibition is an alternative modality that can be implemented to tackle this resistance channel. This strategy has successfully revitalized the efficacy of a number of otherwise obsolete BLs since the discovery of the first β-lactamase inhibitor (BLI), clavulanic acid. Over the years, β-lactamase inhibition research has grown, leading to the introduction of new synthetic inhibitors, and a few are currently in clinical trials. Of note, the 1, 6-diazabicyclo [3,2,1]octan-7-one (DBO) scaffold gained the attention of researchers around the world, which finally culminated in the approval of two BLIs, avibactam and relebactam, which can successfully inhibit Ambler class A, C, and D β-lactamases. Boronic acids have shown promise in coping with Ambler class B β-lactamases in recent research, in addition to classes A, C, and D with the clinical use of vaborbactam. This review focuses on the further developments in the synthetic strategies using DBO as well as boronic acid derivatives. In addition, various other potential serine- and metallo- β-lactamases inhibitors that have been developed in last few years are discussed briefly as well. Furthermore, binding interactions of the representative inhibitors have been discussed based on the crystal structure data of inhibitor-enzyme complex, published in the literature.
Collapse
Affiliation(s)
- Zafar Iqbal
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | - Jian Sun
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| | | | | | | | | | | | | | | | | | | | - Zhixiang Yang
- Ningxia Centre of Organic Synthesis and Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, No. 590, Huanghe East Road, Jinfeng District, Yinchuan 750002, China; (H.Y.); (J.J.); (L.H.); (L.Z.); (J.J.); (P.Z.); (D.T.); (Y.M.); (L.W.)
| |
Collapse
|
8
|
The development of New Delhi metallo-β-lactamase-1 inhibitors since 2018. Microbiol Res 2022; 261:127079. [DOI: 10.1016/j.micres.2022.127079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
9
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
10
|
A new procedure for thioester deprotection using thioglycolic acid in both homogeneous and heterogeneous phase. Tetrahedron 2021; 94. [PMID: 34744193 DOI: 10.1016/j.tet.2021.132335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Classic acetyl thioester protection/deprotection methodologies are widely used in organic synthesis, but deprotection step usually requires harsh conditions not suitable for labile substrates. In this work, a new method for thioester deprotection using a thiotransesterification approach is described. Firstly, thioglycolic acid (TGA) was identified as a good deprotecting reagent in solution. In order to develop a thiol polymer-supported reagent, TGA was anchored to a PEG-based resin through an amide bond (TG-NCO-SH). Both homogeneous and heterogeneous approaches were conveniently carried out at room temperature, in aqueous buffer at pH 8. The mild conditions were suitable for alkyl and phenyl thioesters. Moreover labile thioesters containing thiazolidine and oxazolidine scaffolds, bearing amine, ester and acetal functionalities were also deprotected. The polymer-supported TGA gave better deprotection yields compared to TGA in solution, yields ranging from 61 to 90%. The feasibility of the recovery and reuse of TG-NCO-SH reagent was explored, showing it can be reused at least five times without lossing the activity.
Collapse
|
11
|
Detection and characterization of VIM-52, a new variant of VIM-1 from Klebsiella pneumoniae clinical isolate. Antimicrob Agents Chemother 2021; 65:e0266020. [PMID: 34370584 DOI: 10.1128/aac.02660-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the last two decades, antimicrobial resistance has become a global health problem. In Gram-negative bacteria, metallo-β-lactamases (MBLs), which inactivate virtually all β-lactams, increasingly contribute to this phenomenon. The aim of this study is to characterize VIM-52, a His224Arg variant of VIM-1, identified in a Klebsiella pneumoniae clinical isolate. VIM-52 conferred lower MICs to cefepime and ceftazidime as compared to VIM-1. These results were confirmed by steady state kinetic measurements, where VIM-52 yielded a lower activity towards ceftazidime and cefepime but not against carbapenems. Residue 224 is part of the L10 loop (residues 221-241), which borders the active site. As Arg 224 and Ser 228 are both playing an important and interrelated role in enzymatic activity, stability and substrate specificity for the MBLs, targeted mutagenesis at both positions were performed and further confirmed their crucial role for substrate specificity.
Collapse
|
12
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
13
|
Fröhlich C, Sørum V, Huber S, Samuelsen Ø, Berglund F, Kristiansson E, Kotsakis SD, Marathe NP, Larsson DGJ, Leiros HKS. Structural and biochemical characterization of the environmental MBLs MYO-1, ECV-1 and SHD-1. J Antimicrob Chemother 2021; 75:2554-2563. [PMID: 32464640 PMCID: PMC7443720 DOI: 10.1093/jac/dkaa175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND MBLs form a large and heterogeneous group of bacterial enzymes conferring resistance to β-lactam antibiotics, including carbapenems. A large environmental reservoir of MBLs has been identified, which can act as a source for transfer into human pathogens. Therefore, structural investigation of environmental and clinically rare MBLs can give new insights into structure-activity relationships to explore the role of catalytic and second shell residues, which are under selective pressure. OBJECTIVES To investigate the structure and activity of the environmental subclass B1 MBLs MYO-1, SHD-1 and ECV-1. METHODS The respective genes of these MBLs were cloned into vectors and expressed in Escherichia coli. Purified enzymes were characterized with respect to their catalytic efficiency (kcat/Km). The enzymatic activities and MICs were determined for a panel of different β-lactams, including penicillins, cephalosporins and carbapenems. Thermostability was measured and structures were solved using X-ray crystallography (MYO-1 and ECV-1) or generated by homology modelling (SHD-1). RESULTS Expression of the environmental MBLs in E. coli resulted in the characteristic MBL profile, not affecting aztreonam susceptibility and decreasing susceptibility to carbapenems, cephalosporins and penicillins. The purified enzymes showed variable catalytic activity in the order of <5% to ∼70% compared with the clinically widespread NDM-1. The thermostability of ECV-1 and SHD-1 was up to 8°C higher than that of MYO-1 and NDM-1. Using solved structures and molecular modelling, we identified differences in their second shell composition, possibly responsible for their relatively low hydrolytic activity. CONCLUSIONS These results show the importance of environmental species acting as reservoirs for MBL-encoding genes.
Collapse
Affiliation(s)
- Christopher Fröhlich
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Vidar Sørum
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Sandra Huber
- Department of Laboratory Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.,Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Stathis D Kotsakis
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P Marathe
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden.,Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden.,Institute of Marine Research, Bergen, Norway
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| | - Hanna-Kirsti S Leiros
- The Norwegian Structural Biology Centre (NorStruct), Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
14
|
Shin WS, Nguyen ME, Bergstrom A, Jennings IR, Crowder MW, Muthyala R, Sham YY. Fragment-based screening and hit-based substructure search: Rapid discovery of 8-hydroxyquinoline-7-carboxylic acid as a low-cytotoxic, nanomolar metallo β-lactamase inhibitor. Chem Biol Drug Des 2021; 98:481-492. [PMID: 34148302 DOI: 10.1111/cbdd.13912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022]
Abstract
Metallo-β-lactamases (MBLs) are zinc-containing carbapenemases that inactivate a broad range of β-lactam antibiotics. There is a lack of β-lactamase inhibitors for restoring existing β-lactam antibiotics arsenals against common bacterial infections. Fragment-based screening of a non-specific metal chelator library demonstrates 8-hydroxyquinoline as a broad-spectrum nanomolar inhibitor against VIM-2 and NDM-1. A hit-based substructure search provided an early structure-activity relationship of 8-hydroxyquinolines and identified 8-hydroxyquinoline-7-carboxylic acid as a low-cytotoxic β-lactamase inhibitor that can restore β-lactam activity against VIM-2-expressing E. coli. Molecular modeling further shed structural insight into its potential mode of binding within the dinuclear zinc active site. 8-Hydroxyquinoline-7-carboxylic acid is highly stable in human plasma and human liver microsomal study, making it an ideal lead candidate for further development.
Collapse
Affiliation(s)
- Woo Shik Shin
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | - Megin E Nguyen
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA
| | | | - Isabella R Jennings
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Ramaiah Muthyala
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Yuk Yin Sham
- Bioinformatics and Computational Biology Program, University of Minnesota, Minneapolis, MN, USA.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
15
|
Rossi MA, Martinez V, Hinchliffe P, Mojica MF, Castillo V, Moreno DM, Smith R, Spellberg B, Drusano GL, Banchio C, Bonomo RA, Spencer J, Vila AJ, Mahler G. 2-Mercaptomethyl-thiazolidines use conserved aromatic-S interactions to achieve broad-range inhibition of metallo-β-lactamases. Chem Sci 2021; 12:2898-2908. [PMID: 34164056 PMCID: PMC8179362 DOI: 10.1039/d0sc05172a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Infections caused by multidrug resistant (MDR) bacteria are a major public health threat. Carbapenems are among the most potent antimicrobial agents that are commercially available to treat MDR bacteria. Bacterial production of carbapenem-hydrolysing metallo-β-lactamases (MBLs) challenges their safety and efficacy, with subclass B1 MBLs hydrolysing almost all β-lactam antibiotics. MBL inhibitors would fulfil an urgent clinical need by prolonging the lifetime of these life-saving drugs. Here we report the synthesis and activity of a series of 2-mercaptomethyl-thiazolidines (MMTZs), designed to replicate MBL interactions with reaction intermediates or hydrolysis products. MMTZs are potent competitive inhibitors of B1 MBLs in vitro (e.g., K i = 0.44 μM vs. NDM-1). Crystal structures of MMTZ complexes reveal similar binding patterns to the most clinically important B1 MBLs (NDM-1, VIM-2 and IMP-1), contrasting with previously studied thiol-based MBL inhibitors, such as bisthiazolidines (BTZs) or captopril stereoisomers, which exhibit lower, more variable potencies and multiple binding modes. MMTZ binding involves thiol coordination to the Zn(ii) site and extensive hydrophobic interactions, burying the inhibitor more deeply within the active site than d/l-captopril. Unexpectedly, MMTZ binding features a thioether-π interaction with a conserved active-site aromatic residue, consistent with their equipotent inhibition and similar binding to multiple MBLs. MMTZs penetrate multiple Enterobacterales, inhibit NDM-1 in situ, and restore carbapenem potency against clinical isolates expressing B1 MBLs. Based on their inhibitory profile and lack of eukaryotic cell toxicity, MMTZs represent a promising scaffold for MBL inhibitor development. These results also suggest sulphur-π interactions can be exploited for general ligand design in medicinal chemistry.
Collapse
Affiliation(s)
- Maria-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
| | - Veronica Martinez
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Maria F Mojica
- Infectious Diseases Department, School of Medicine, Case Western Reserve University Cleveland OH USA
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque Bogotá DC Colombia
| | - Valerie Castillo
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| | - Diego M Moreno
- Instituto de Química de Rosario (IQUIR, CONICET-UNR) Suipacha 570 S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Ryan Smith
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Brad Spellberg
- Los Angeles County and University of Southern California (LAC + USC) Medical Center Los Angeles CA USA
| | - George L Drusano
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida Orlando FL USA
| | - Claudia Banchio
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine Cleveland OH USA
- Medical Service, GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center Cleveland OH USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland OH USA
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk Bristol BS8 1TD UK
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR) Ocampo and Esmeralda S2002LRK Rosario Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario S2002LRK Rosario Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Departamento de Química Orgánica, Facultad de Química, Universidad de la República (UdelaR) Avda. General Flores 2124 CC1157 Montevideo Uruguay
| |
Collapse
|
16
|
Chen JZ, Fowler DM, Tokuriki N. Comprehensive exploration of the translocation, stability and substrate recognition requirements in VIM-2 lactamase. eLife 2020; 9:e56707. [PMID: 32510322 PMCID: PMC7308095 DOI: 10.7554/elife.56707] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Metallo-β-lactamases (MBLs) degrade a broad spectrum of β-lactam antibiotics, and are a major disseminating source for multidrug resistant bacteria. Despite many biochemical studies in diverse MBLs, molecular understanding of the roles of residues in the enzyme's stability and function, and especially substrate specificity, is lacking. Here, we employ deep mutational scanning (DMS) to generate comprehensive single amino acid variant data on a major clinical MBL, VIM-2, by measuring the effect of thousands of VIM-2 mutants on the degradation of three representative classes of β-lactams (ampicillin, cefotaxime, and meropenem) and at two different temperatures (25°C and 37°C). We revealed residues responsible for expression and translocation, and mutations that increase resistance and/or alter substrate specificity. The distribution of specificity-altering mutations unveiled distinct molecular recognition of the three substrates. Moreover, these function-altering mutations are frequently observed among naturally occurring variants, suggesting that the enzymes have continuously evolved to become more potent resistance genes.
Collapse
Affiliation(s)
- John Z Chen
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| | - Douglas M Fowler
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Department of Bioengineering, University of WashingtonSeattleUnited States
| | - Nobuhiko Tokuriki
- Michael Smith Laboratories, University of British ColumbiaVancouverCanada
| |
Collapse
|
17
|
Palacios AR, Rossi MA, Mahler GS, Vila AJ. Metallo-β-Lactamase Inhibitors Inspired on Snapshots from the Catalytic Mechanism. Biomolecules 2020; 10:E854. [PMID: 32503337 PMCID: PMC7356002 DOI: 10.3390/biom10060854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
β-Lactam antibiotics are the most widely prescribed antibacterial drugs due to their low toxicity and broad spectrum. Their action is counteracted by different resistance mechanisms developed by bacteria. Among them, the most common strategy is the expression of β-lactamases, enzymes that hydrolyze the amide bond present in all β-lactam compounds. There are several inhibitors against serine-β-lactamases (SBLs). Metallo-β-lactamases (MBLs) are Zn(II)-dependent enzymes able to hydrolyze most β-lactam antibiotics, and no clinically useful inhibitors against them have yet been approved. Despite their large structural diversity, MBLs have a common catalytic mechanism with similar reaction species. Here, we describe a number of MBL inhibitors that mimic different species formed during the hydrolysis process: substrate, transition state, intermediate, or product. Recent advances in the development of boron-based and thiol-based inhibitors are discussed in the light of the mechanism of MBLs. We also discuss the use of chelators as a possible strategy, since Zn(II) ions are essential for substrate binding and catalysis.
Collapse
Affiliation(s)
- Antonela R. Palacios
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - María-Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
| | - Graciela S. Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la Republica (UdelaR), Montevideo 11800, Uruguay;
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Ocampo and Esmeralda, S2002LRK Rosario, Argentina; (A.R.P.); (M.-A.-R.)
- Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| |
Collapse
|
18
|
Martínez V, Villamil V, Duarte D, Saiz C, Davyt D, Fontana C, Veiga N, Mahler G. Preparation and Mechanistic Studies of 2-Substituted Bisthiazolidines by Imine Exchange. European J Org Chem 2020; 2020:1084-1092. [DOI: 10.1002/ejoc.201901677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verónica Martínez
- Laboratorio de Química Farmacéutica; Departamento de Química Orgánica; Facultad de Química; Universidad de la República (UdelaR); Avda. General Flores 2124, CC 1157 Montevideo Uruguay
| | - Valentina Villamil
- Laboratorio de Química Farmacéutica; Departamento de Química Orgánica; Facultad de Química; Universidad de la República (UdelaR); Avda. General Flores 2124, CC 1157 Montevideo Uruguay
| | - Diego Duarte
- Laboratorio de Química Farmacéutica; Departamento de Química Orgánica; Facultad de Química; Universidad de la República (UdelaR); Avda. General Flores 2124, CC 1157 Montevideo Uruguay
| | - Cecilia Saiz
- Laboratorio de Química Farmacéutica; Departamento de Química Orgánica; Facultad de Química; Universidad de la República (UdelaR); Avda. General Flores 2124, CC 1157 Montevideo Uruguay
| | - Danilo Davyt
- Laboratorio de Química Farmacéutica; Departamento de Química Orgánica; Facultad de Química; Universidad de la República (UdelaR); Avda. General Flores 2124, CC 1157 Montevideo Uruguay
| | - Carolina Fontana
- Laboratorio de Espectroscopía y Fisicoquímica Orgánica; Departamento de Química del Litoral, CENUR Litoral Norte (S.R.A. Facultad de Química); Ruta 3 km 363 Paysandú Uruguay
| | - Nicolás Veiga
- Química Inorgánica; Departamento Estrella Campos; Facultad de Química; General Flores 2124 CC1157 Montevideo Uruguay
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica; Departamento de Química Orgánica; Facultad de Química; Universidad de la República (UdelaR); Avda. General Flores 2124, CC 1157 Montevideo Uruguay
| |
Collapse
|
19
|
Cheng Z, Shurina BA, Bethel CR, Thomas PW, Marshall SH, Thomas CA, Yang K, Kimble RL, Montgomery JS, Orischak MG, Miller CM, Tennenbaum JL, Nix JC, Tierney DL, Fast W, Bonomo RA, Page RC, Crowder MW. A Single Salt Bridge in VIM-20 Increases Protein Stability and Antibiotic Resistance under Low-Zinc Conditions. mBio 2019; 10:e02412-19. [PMID: 31744917 PMCID: PMC6867895 DOI: 10.1128/mbio.02412-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/04/2019] [Indexed: 12/31/2022] Open
Abstract
To understand the evolution of Verona integron-encoded metallo-β-lactamase (VIM) genes (blaVIM) and their clinical impact, microbiological, biochemical, and structural studies were conducted. Forty-five clinically derived VIM variants engineered in a uniform background and expressed in Escherichia coli afforded increased resistance toward all tested antibiotics; the variants belonging to the VIM-1-like and VIM-4-like families exhibited higher MICs toward five out of six antibiotics than did variants belonging to the widely distributed and clinically important VIM-2-like family. Generally, maximal MIC increases were observed when cephalothin and imipenem were tested. Additionally, MIC determinations under conditions with low zinc availability suggested that some VIM variants are also evolving to overcome zinc deprivation. The most profound increase in resistance was observed in VIM-2-like variants (e.g., VIM-20 H229R) at low zinc availability. Biochemical analyses reveal that VIM-2 and VIM-20 exhibited similar metal binding properties and steady-state kinetic parameters under the conditions tested. Crystal structures of VIM-20 in the reduced and oxidized forms at 1.25 Å and 1.37 Å resolution, respectively, show that Arg229 forms an additional salt bridge with Glu171. Differential scanning fluorimetry of purified proteins and immunoblots of periplasmic extracts revealed that this difference increases thermostability and resistance to proteolytic degradation when zinc availability is low. Therefore, zinc scarcity appears to be a selective pressure driving the evolution of multiple metallo-β-lactamase families, although compensating mutations use different mechanisms to enhance resistance.IMPORTANCE Antibiotic resistance is a growing clinical threat. One of the most serious areas of concern is the ability of some bacteria to degrade carbapenems, drugs that are often reserved as last-resort antibiotics. Resistance to carbapenems can be conferred by a large group of related enzymes called metallo-β-lactamases that rely on zinc ions for function and for overall stability. Here, we studied an extensive panel of 45 different metallo-β-lactamases from a subfamily called VIM to discover what changes are emerging as resistance evolves in clinical settings. Enhanced resistance to some antibiotics was observed. We also found that at least one VIM variant developed a new ability to remain more stable under conditions where zinc availability is limited, and we determined the origin of this stability in atomic detail. These results suggest that zinc scarcity helps drive the evolution of this resistance determinant.
Collapse
Affiliation(s)
- Zishuo Cheng
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Christopher R Bethel
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Pei W Thomas
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas, USA
| | - Steven H Marshall
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Caitlyn A Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Robert L Kimble
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | | | - Matthew G Orischak
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Callie M Miller
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Jordan L Tennenbaum
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Jay C Nix
- Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - David L Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Walter Fast
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas, USA
| | - Robert A Bonomo
- Research Services, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, the CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| | - Michael W Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio, USA
| |
Collapse
|
20
|
Hishinuma T, Tada T, Uchida H, Shimojima M, Kirikae T. A Novel VIM-Type Metallo-β-Lactamase Variant, VIM-60, with Increased Hydrolyzing Activity against Fourth-Generation Cephalosporins in Pseudomonas aeruginosa Clinical Isolates in Japan. Antimicrob Agents Chemother 2019; 63:e00124-19. [PMID: 30962328 PMCID: PMC6535569 DOI: 10.1128/aac.00124-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022] Open
Abstract
A novel VIM-type metallo-β-lactamase variant, VIM-60, was identified in multidrug-resistant Pseudomonas aeruginosa clinical isolates in Japan. Compared with VIM-2, VIM-60 had two amino acid substitutions (Arg228Leu and His252Arg) and higher catalytic activities against fourth-generation cephalosporins. The genetic context for blaVIM-60 was intI1-blaVIM-60-aadA1-aacA31-qacEdeltaI-sulI on the chromosome.
Collapse
Affiliation(s)
- Tomomi Hishinuma
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Tada
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiroki Uchida
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | | | - Teruo Kirikae
- Department of Microbiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
21
|
The Reaction Mechanism of Metallo-β-Lactamases Is Tuned by the Conformation of an Active-Site Mobile Loop. Antimicrob Agents Chemother 2018; 63:AAC.01754-18. [PMID: 30348667 DOI: 10.1128/aac.01754-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/01/2018] [Indexed: 12/31/2022] Open
Abstract
Carbapenems are "last resort" β-lactam antibiotics used to treat serious and life-threatening health care-associated infections caused by multidrug-resistant Gram-negative bacteria. Unfortunately, the worldwide spread of genes coding for carbapenemases among these bacteria is threatening these life-saving drugs. Metallo-β-lactamases (MβLs) are the largest family of carbapenemases. These are Zn(II)-dependent hydrolases that are active against almost all β-lactam antibiotics. Their catalytic mechanism and the features driving substrate specificity have been matter of intense debate. The active sites of MβLs are flanked by two loops, one of which, loop L3, was shown to adopt different conformations upon substrate or inhibitor binding, and thus are expected to play a role in substrate recognition. However, the sequence heterogeneity observed in this loop in different MβLs has limited the generalizations about its role. Here, we report the engineering of different loops within the scaffold of the clinically relevant carbapenemase NDM-1. We found that the loop sequence dictates its conformation in the unbound form of the enzyme, eliciting different degrees of active-site exposure. However, these structural changes have a minor impact on the substrate profile. Instead, we report that the loop conformation determines the protonation rate of key reaction intermediates accumulated during the hydrolysis of different β-lactams in all MβLs. This study demonstrates the existence of a direct link between the conformation of this loop and the mechanistic features of the enzyme, bringing to light an unexplored function of active-site loops on MβLs.
Collapse
|
22
|
Kang JS, Zhang AL, Faheem M, Zhang CJ, Ai N, Buynak JD, Welsh WJ, Oelschlaeger P. Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors. J Chem Inf Model 2018; 58:1902-1914. [PMID: 30107123 DOI: 10.1021/acs.jcim.8b00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The global rise of metallo-β-lactamases (MBLs) is problematic due to their ability to inactivate most β-lactam antibiotics. MBL inhibitors that could be coadministered with and restore the efficacy of β-lactams are highly sought after. In this study, we employ virtual screening of candidate MBL inhibitors without thiols or carboxylates to avoid off-target effects using the Avalanche software package, followed by experimental validation of the selected compounds. As target enzymes, we chose the clinically relevant B1 MBLs NDM-1, IMP-1, and VIM-2. Among 32 compounds selected from an approximately 1.5 million compound library, 6 exhibited IC50 values less than 40 μM against NDM-1 and/or IMP-1. The most potent inhibitors of NDM-1, IMP-1, and VIM-2 had IC50 values of 19 ± 2, 14 ± 1, and 50 ± 20 μM, respectively. While chemically diverse, the most potent inhibitors all contain combinations of hydroxyl, ketone, ester, amide, or sulfonyl groups. Docking studies suggest that these electron-dense moieties are involved in Zn(II) coordination and interaction with protein residues. These novel scaffolds could serve as the basis for further development of MBL inhibitors. A procedure for renaming NDM-1 residues to conform to the class B β-lactamase (BBL) numbering scheme is also included.
Collapse
Affiliation(s)
- Joon S Kang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States.,Department of Biological Sciences , California State Polytechnic University , Pomona , California 91768-2557 , United States
| | - Antonia L Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Mohammad Faheem
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Charles J Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| | - Ni Ai
- Pharmaceutical Informatics Institute, School of Pharmaceutical Sciences , Zhejiang University , Zhejiang 31005 , People's Republic of China
| | - John D Buynak
- Department of Chemistry , Southern Methodist University , Dallas , Texas 75275-0314 , United States
| | - William J Welsh
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, and Division of Chem Informatics, Biomedical Informatics Shared Resource, Rutgers-Cancer Institute of New Jersey , The State University of New Jersey , Piscataway , New Jersey 08854-8021 , United States
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy , Western University of Health Sciences , Pomona , California 91766-1854 , United States
| |
Collapse
|
23
|
Abstract
In recent decades, carbapenems have been considered the last line of antibiotic therapy for Gram-negative bacterial infections. Unfortunately, strains carrying a high diversity of β-lactamases able to hydrolyze carbapenems have emerged in the clinical setting. Among them, VIM β-lactamases have diversified in a bloom of variants. The evolutionary reconstructions performed in this work revealed that, at the end of the 1980s, two independent events involving diversification from VIM-2 and VIM-4 produced at least 25 VIM variants. Later, a third event involving diversification from VIM-1 occurred in the mid-1990s. In a second approach to understanding the emergence of VIM carbapenemases, 44 mutants derived from VIM-2 and VIM-4 were obtained by site-directed mutagenesis based on those positions predicted to be under positive selection. These variants were expressed in an isogenic context. The more-evolved variants yielded increased levels of hydrolytic efficiency toward ceftazidime to a higher degree than toward carbapenems. In fact, an antagonist effect was frequently observed. These results led us to develop an experimental-evolution step. When Escherichia coli strains carrying VIM-2 or VIM-4 were submitted to serial passages at increasing concentrations of carbapenems or ceftazidime, more-efficient new variants (such as VIM-11 and VIM-1, with N165S [bearing a change from N to S at position 165] and R228S mutations, respectively) were only obtained when ceftazidime was present. Therefore, the observed effect of ceftazidime in the diversification and selection of VIM variants might help to explain the recent bloom of carbapenemase diversity, and it also represents another example of the potential universal effect exerted by ceftazidime in the selection of more-efficient β-lactamase variants, as in TEM, CTX-M, or KPC enzymes. One of the objectives recently proposed by the World Health Organization (WHO) Assembly in the global plan on antimicrobial resistance was to improve the understanding and knowledge of antimicrobial resistance. In the present work, we paid attention to the drivers of diversification and selection of new carbapenemases in Gram-negative bacteria, which occupy one of the most critical places in the WHO priority list of antibiotic-resistant microorganisms. Based on evolutionary-reconstruction, site-directed-mutagenesis, and experimental-evolution approaches, we proposed a critical role of ceftazidime exposure in the selection of VIM carbapenemase variants. This surprising finding is also applicable to other β-lactamases, indicating that ceftazidime, and not other antibiotics, might have a universal effect in the diversification of β-lactamases. Our results might help to define future strategies to reconsider the extended use of ceftazidime.
Collapse
|
24
|
Hinchliffe P, Tanner CA, Krismanich AP, Labbé G, Goodfellow VJ, Marrone L, Desoky AY, Calvopiña K, Whittle EE, Zeng F, Avison MB, Bols NC, Siemann S, Spencer J, Dmitrienko GI. Structural and Kinetic Studies of the Potent Inhibition of Metallo-β-lactamases by 6-Phosphonomethylpyridine-2-carboxylates. Biochemistry 2018; 57:1880-1892. [PMID: 29485857 PMCID: PMC6007964 DOI: 10.1021/acs.biochem.7b01299] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/15/2018] [Indexed: 01/05/2023]
Abstract
There are currently no clinically available inhibitors of metallo-β-lactamases (MBLs), enzymes that hydrolyze β-lactam antibiotics and confer resistance to Gram-negative bacteria. Here we present 6-phosphonomethylpyridine-2-carboxylates (PMPCs) as potent inhibitors of subclass B1 (IMP-1, VIM-2, and NDM-1) and B3 (L1) MBLs. Inhibition followed a competitive, slow-binding model without an isomerization step (IC50 values of 0.3-7.2 μM; Ki values of 0.03-1.5 μM). Minimum inhibitory concentration assays demonstrated potentiation of β-lactam (Meropenem) activity against MBL-producing bacteria, including clinical isolates, at concentrations at which eukaryotic cells remain viable. Crystal structures revealed unprecedented modes of binding of inhibitor to B1 (IMP-1) and B3 (L1) MBLs. In IMP-1, binding does not replace the nucleophilic hydroxide, and the PMPC carboxylate and pyridine nitrogen interact closely (2.3 and 2.7 Å, respectively) with the Zn2 ion of the binuclear metal site. The phosphonate group makes limited interactions but is 2.6 Å from the nucleophilic hydroxide. Furthermore, the presence of a water molecule interacting with the PMPC phosphonate and pyridine N-C2 π-bond, as well as the nucleophilic hydroxide, suggests that the PMPC binds to the MBL active site as its hydrate. Binding is markedly different in L1, with the phosphonate displacing both Zn2, forming a monozinc enzyme, and the nucleophilic hydroxide, while also making multiple interactions with the protein main chain and Zn1. The carboxylate and pyridine nitrogen interact with Ser221 and -223, respectively (3 Å distance). The potency, low toxicity, cellular activity, and amenability to further modification of PMPCs indicate these and similar phosphonate compounds can be further considered for future MBL inhibitor development.
Collapse
Affiliation(s)
- Philip Hinchliffe
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Carol A. Tanner
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Geneviève Labbé
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | - Laura Marrone
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ahmed Y. Desoky
- Department
of Chemistry, College of Science, University
of Hail, Saudi Arabia
| | - Karina Calvopiña
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Emily E. Whittle
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Fanxing Zeng
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Matthew B. Avison
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Niels C. Bols
- Department
of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Stefan Siemann
- Department
of Chemistry and Biochemistry, Laurentian
University, Sudbury, Ontario, Canada P3E 2C6
| | - James Spencer
- School
of Cellular & Molecular Medicine, University
of Bristol, Bristol BS8 1TD, U.K.
| | - Gary I. Dmitrienko
- Department
of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- School
of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
25
|
Büttner D, Kramer JS, Klingler FM, Wittmann SK, Hartmann MR, Kurz CG, Kohnhäuser D, Weizel L, Brüggerhoff A, Frank D, Steinhilber D, Wichelhaus TA, Pogoryelov D, Proschak E. Challenges in the Development of a Thiol-Based Broad-Spectrum Inhibitor for Metallo-β-Lactamases. ACS Infect Dis 2018; 4:360-372. [PMID: 29172434 DOI: 10.1021/acsinfecdis.7b00129] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pathogens, expressing metallo-β-lactamases (MBLs), become resistant against most β-lactam antibiotics. Besides the dragging search for new antibiotics, development of MBL inhibitors would be an alternative weapon against resistant bacterial pathogens. Inhibition of resistance enzymes could restore the antibacterial activity of β-lactams. Various approaches to MBL inhibitors are described; among others, the promising motif of a zinc coordinating thiol moiety is very popular. Nevertheless, since the first report of a thiol-based MBL inhibitor (thiomandelic acid) in 2001, no steps in development of thiol based MBL inhibitors were reported that go beyond clinical isolate testing. In this study, we report on the synthesis and biochemical characterization of thiol-based MBL inhibitors and highlight the challenges behind the development of thiol-based compounds, which exhibit good in vitro activity toward a broad spectrum of MBLs, selectivity against human off-targets, and reasonable activity against clinical isolates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Denia Frank
- Institute of Medical Microbiology and Infection Control, Goethe University Hospital, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | | | - Thomas A. Wichelhaus
- Institute of Medical Microbiology and Infection Control, Goethe University Hospital, Paul-Ehrlich-Straße 40, 60596 Frankfurt, Germany
| | | | | |
Collapse
|
26
|
Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 2017; 36:13-29. [PMID: 29499835 DOI: 10.1016/j.drup.2017.11.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 11/27/2022]
Abstract
Antibiotic resistance, and the emergence of pan-resistant clinical isolates, seriously threatens our capability to treat bacterial diseases, including potentially deadly hospital-acquired infections. This growing issue certainly requires multiple adequate responses, including the improvement of both diagnosis methods and use of antibacterial agents, and obviously the development of novel antibacterial drugs, especially active against Gram-negative pathogens, which represent an urgent medical need. Considering the clinical relevance of both β-lactam antibiotics and β-lactamase-mediated resistance, the discovery and development of combinations including a β-lactamase inhibitor seems to be particularly attractive, despite being extremely challenging due to the enormous diversity, both structurally and mechanistically, of the potential β-lactamase targets. This review will cover the evolution of currently available β-lactamase inhibitors along with the most recent research leading to new β-lactamase inhibitors of potential clinical interest or already in the stage of clinical development.
Collapse
Affiliation(s)
- Jean-Denis Docquier
- Department of Medical Biotechnology, University of Siena, Viale Bracci 16, 53100 Siena, Italy.
| | - Stefano Mangani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
27
|
Abstract
Given the serious medical burden of β-lactamases, many approaches are being used identify candidate agents for β-lactamase inhibition. Here, we review two β-lactam-β-lactamase inhibitor (BL-BLI) combinations, ceftolozane-tazobactam and ceftazidime-avibactam that recently entered the clinic. In addition, we focus on BL-BLI combinations in preclinical development that have demonstrated activity in clinical isolates via susceptibility testing and/or in in vivo models of infection. We highlight only the BLIs that are able to reduce the Clinical Laboratory Standards Institute (CLSI) breakpoints for the BL partner into the susceptible range. Our analysis includes the primary literature, meeting abstracts, as well as the patent literature.
Collapse
|
28
|
Structural Insights into TMB-1 and the Role of Residues 119 and 228 in Substrate and Inhibitor Binding. Antimicrob Agents Chemother 2017; 61:AAC.02602-16. [PMID: 28559248 DOI: 10.1128/aac.02602-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
Metallo-β-lactamases (MBLs) threaten the effectiveness of β-lactam antibiotics, including carbapenems, and are a concern for global public health. β-Lactam/β-lactamase inhibitor combinations active against class A and class D carbapenemases are used, but no clinically useful MBL inhibitor is currently available. Tripoli metallo-β-lactamase-1 (TMB-1) and TMB-2 are members of MBL subclass B1a, where TMB-2 is an S228P variant of TMB-1. The role of S228P was studied by comparisons of TMB-1 and TMB-2, and E119 was investigated through the construction of site-directed mutants of TMB-1, E119Q, E119S, and E119A (E119Q/S/A). All TMB variants were characterized through enzyme kinetic studies. Thermostability and crystallization analyses of TMB-1 were performed. Thiol-based inhibitors were investigated by determining the 50% inhibitory concentrations (IC50) and binding using surface plasmon resonance (SPR) for analysis of TMB-1. Thermostability measurements found TMB-1 to be stabilized by high NaCl concentrations. Steady-state enzyme kinetics analyses found substitutions of E119, in particular, substitutions associated with the penicillins, to affect hydrolysis to some extent. TMB-2 with S228P showed slightly reduced catalytic efficiency compared to TMB-1. The IC50 levels of the new thiol-based inhibitors were 0.66 μM (inhibitor 2a) and 0.62 μM (inhibitor 2b), and the equilibrium dissociation constant (KD ) of inhibitor 2a was 1.6 μM; thus, both were more potent inhibitors than l-captopril (IC50 = 47 μM; KD = 25 μM). The crystal structure of TMB-1 was resolved to 1.75 Å. Modeling of inhibitor 2b in the TMB-1 active site suggested that the presence of the W64 residue results in T-shaped π-π stacking and R224 cation-π interactions with the phenyl ring of the inhibitor. In sum, the results suggest that residues 119 and 228 affect the catalytic efficiency of TMB-1 and that inhibitors 2a and 2b are more potent inhibitors for TMB-1 than l-captopril.
Collapse
|
29
|
Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Eur J Med Chem 2017; 135:159-173. [DOI: 10.1016/j.ejmech.2017.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/24/2017] [Accepted: 04/11/2017] [Indexed: 01/28/2023]
|
30
|
Shin WS, Bergstrom A, Xie J, Bonomo RA, Crowder MW, Muthyala R, Sham YY. Discovery of 1-Hydroxypyridine-2(1H)-thione-6-carboxylic Acid as a First-in-Class Low-Cytotoxic Nanomolar Metallo β-Lactamase Inhibitor. ChemMedChem 2017; 12:845-849. [PMID: 28482143 PMCID: PMC6034706 DOI: 10.1002/cmdc.201700182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/08/2017] [Indexed: 11/06/2022]
Abstract
VIM-2 is one of the most common carbapenem-hydrolyzing metallo β-lactamases (MBL) found in many drug-resistant Gram-negative bacterial strains. Currently, there is a lack of effective lead compounds with optimal therapeutic potential within our drug development pipeline. Here we report the discovery of 1-hydroxypyridine-2(1H)-thione-6-carboxylic acid (3) as a first-in-class metallo β-lactamase inhibitor (MBLi) with a potent inhibition Ki of 13 nm against VIM-2 that corresponds to a remarkable 0.99 ligand efficiency. We further established that 3 can restore the antibiotic activity of amoxicillin against VIM-2-producing E. coli in a whole cell assay with an EC50 of 110 nm. The potential mode of binding of 3 from molecular modeling provided structural insights that could corroborate the observed changes in the biochemical activities. Finally, 3 possesses a low cytotoxicity (CC50 ) of 97 μm with a corresponding therapeutic index of 880, making it a promising lead candidate for further optimization in combination antibacterial therapy.
Collapse
Affiliation(s)
- Woo Shik Shin
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455
- Biomedical Informatics and Computational Biology Program
| | - Alexander Bergstrom
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Jiashu Xie
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455
| | - Robert A. Bonomo
- Medical Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056
| | - Ramaiah Muthyala
- Center for Orphan Drug Research, University of Minnesota, Minneapolis, MN 55455
- Department of Experimental & Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455
| | - Yuk Yin Sham
- Center for Drug Design, University of Minnesota, Minneapolis, MN 55455
- Biomedical Informatics and Computational Biology Program
| |
Collapse
|
31
|
WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent "β-Lactam Enhancer" Activity against Pseudomonas aeruginosa, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. Antimicrob Agents Chemother 2017; 61:AAC.02529-16. [PMID: 28289035 DOI: 10.1128/aac.02529-16] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/24/2017] [Indexed: 12/23/2022] Open
Abstract
Zidebactam and WCK 5153 are novel β-lactam enhancers that are bicyclo-acyl hydrazides (BCH), derivatives of the diazabicyclooctane (DBO) scaffold, targeted for the treatment of serious infections caused by highly drug-resistant Gram-negative pathogens. In this study, we determined the penicillin-binding protein (PBP) inhibition profiles and the antimicrobial activities of zidebactam and WCK 5153 against Pseudomonas aeruginosa, including multidrug-resistant (MDR) metallo-β-lactamase (MBL)-producing high-risk clones. MIC determinations and time-kill assays were conducted for zidebactam, WCK 5153, and antipseudomonal β-lactams using wild-type PAO1, MexAB-OprM-hyperproducing (mexR), porin-deficient (oprD), and AmpC-hyperproducing (dacB) derivatives of PAO1, and MBL-expressing clinical strains ST175 (blaVIM-2) and ST111 (blaVIM-1). Furthermore, steady-state kinetics was used to assess the inhibitory potential of these compounds against the purified VIM-2 MBL. Zidebactam and WCK 5153 showed specific PBP2 inhibition and did not inhibit VIM-2 (apparent Ki [Kiapp] > 100 μM). MICs for zidebactam and WCK 5153 ranged from 2 to 32 μg/ml (amdinocillin MICs > 32 μg/ml). Time-kill assays revealed bactericidal activity of zidebactam and WCK 5153. LIVE-DEAD staining further supported the bactericidal activity of both compounds, showing spheroplast formation. Fixed concentrations (4 or 8 μg/ml) of zidebactam and WCK 5153 restored susceptibility to all of the tested β-lactams for each of the P. aeruginosa mutant strains. Likewise, antipseudomonal β-lactams (CLSI breakpoints), in combination with 4 or 8 μg/ml of zidebactam or WCK 5153, resulted in enhanced killing. Certain combinations determined full bacterial eradication, even with MDR MBL-producing high-risk clones. β-Lactam-WCK enhancer combinations represent a promising β-lactam "enhancer-based" approach to treat MDR P. aeruginosa infections, bypassing the need for MBL inhibition.
Collapse
|
32
|
Saiz C, Villamil V, González MM, Rossi MA, Martínez L, Suescun L, Vila AJ, Mahler G. Enantioselective synthesis of new oxazolidinylthiazolidines as enzyme inhibitors. ACTA ACUST UNITED AC 2017; 28:110-117. [PMID: 28579699 DOI: 10.1016/j.tetasy.2016.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The synthesis of new oxazolidinylthiazolidines bicycles, oxygen analogues of bisthiazolidines, also known as metallo-β-lactamase inhibitors is described. The reaction of β-aminoalcohols and 2,5-dihydroxy-1,4-dithiane led to oxazolidinylthiazolidines and/or dithia-azabicycles as the main products. The distribution pattern depends mainly on the aminoalcohol substituents. In a one-pot reaction, four new bonds are formed in good yields and with high atom efficiency. When the oxazolidinylthiazolidines are formed, two stereogenic centres are generated with high enantiospecificity. The reaction mechanism is discussed based on crystallographic data and interconversion studies. Two oxazolidinylthiazolidines were evaluated as inhibitors of the potent lactamase NDM-1 and compound 4f displayed competitive inhibition with Ki = 1.6 ± 0.6 µM.
Collapse
Affiliation(s)
- Cecilia Saiz
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Valentina Villamil
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Mariano M González
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Ma Agustina Rossi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Lorena Martínez
- Laboratorio de Cristalografía, Química del Estado Sólido y Materiales, Cátedra de Física, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Leopoldo Suescun
- Laboratorio de Cristalografía, Química del Estado Sólido y Materiales, Cátedra de Física, DETEMA, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Graciela Mahler
- Laboratorio de Química Farmacéutica, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
33
|
Structural Insights into Recognition of Hydrolyzed Carbapenems and Inhibitors by Subclass B3 Metallo-β-Lactamase SMB-1. Antimicrob Agents Chemother 2016; 60:4274-82. [PMID: 27161644 DOI: 10.1128/aac.03108-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
Metallo-β-lactamases (MBLs) confer resistance to carbapenems, and their increasing global prevalence is a growing clinical concern. To elucidate the mechanisms by which these enzymes recognize and hydrolyze carbapenems, we solved 1.4 to 1.6 Å crystal structures of SMB-1 (Serratia metallo-β-lactamase 1), a subclass B3 MBL, bound to hydrolyzed carbapenems (doripenem, meropenem, and imipenem). In these structures, SMB-1 interacts mainly with the carbapenem core structure via elements in the active site, including a zinc ion (Zn-2), Q157[113] (where the position in the SMB-1 sequence is in brackets after the BBL number), S221[175], and T223[177]. There is less contact with the carbapenem R2 side chains, strongly indicating that SMB-1 primarily recognizes the carbapenem core structure. This is the first report describing how a subclass B3 MBL recognizes carbapenems. We also solved the crystal structure of SMB-1 in complex with the approved drugs captopril, an inhibitor of the angiotensin-converting enzyme, and 2-mercaptoethanesulfonate, a chemoprotectant. These drugs are inhibitors of SMB-1 with Ki values of 8.9 and 184 μM, respectively. Like carbapenems, these inhibitors interact with Q157[113] and T223[177] and their thiol groups coordinate the zinc ions in the active site. Taken together, the data indicate that Q157[113], S221[175], T223[177], and the two zinc ions in the active site are key targets in the design of SMB-1 inhibitors with enhanced affinity. The structural data provide a solid foundation for the development of effective inhibitors that would overcome the carbapenem resistance of MBL-producing multidrug-resistant microbes.
Collapse
|
34
|
Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A 2016; 113:E3745-54. [PMID: 27303030 DOI: 10.1073/pnas.1601368113] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6-15 µM or 36-84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26-0.36 µM) than d-BTZs (26-29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.
Collapse
|
35
|
González MM, Vila AJ. An Elusive Task: A Clinically Useful Inhibitor of Metallo-β-Lactamases. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
36
|
Comparison of Verona Integron-Borne Metallo-β-Lactamase (VIM) Variants Reveals Differences in Stability and Inhibition Profiles. Antimicrob Agents Chemother 2015; 60:1377-84. [PMID: 26666919 PMCID: PMC4775916 DOI: 10.1128/aac.01768-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/05/2015] [Indexed: 01/28/2023] Open
Abstract
Metallo-β-lactamases (MBLs) are of increasing clinical significance; the development of clinically useful MBL inhibitors is challenged by the rapid evolution of variant MBLs. The Verona integron-borne metallo-β-lactamase (VIM) enzymes are among the most widely distributed MBLs, with >40 VIM variants having been reported. We report on the crystallographic analysis of VIM-5 and comparison of biochemical and biophysical properties of VIM-1, VIM-2, VIM-4, VIM-5, and VIM-38. Recombinant VIM variants were produced and purified, and their secondary structure and thermal stabilities were investigated by circular dichroism analyses. Steady-state kinetic analyses with a representative panel of β-lactam substrates were carried out to compare the catalytic efficiencies of the VIM variants. Furthermore, a set of metalloenzyme inhibitors were screened to compare their effects on the different VIM variants. The results reveal only small variations in the kinetic parameters of the VIM variants but substantial differences in their thermal stabilities and inhibition profiles. Overall, these results support the proposal that protein stability may be a factor in MBL evolution and highlight the importance of screening MBL variants during inhibitor development programs.
Collapse
|
37
|
González MM, Kosmopoulou M, Mojica MF, Castillo V, Hinchliffe P, Pettinati I, Brem J, Schofield CJ, Mahler G, Bonomo RA, Llarrull LI, Spencer J, Vila AJ. Bisthiazolidines: A Substrate-Mimicking Scaffold as an Inhibitor of the NDM-1 Carbapenemase. ACS Infect Dis 2015; 1:544-54. [PMID: 27623409 DOI: 10.1021/acsinfecdis.5b00046] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pathogenic Gram-negative bacteria resistant to almost all β-lactam antibiotics are a major public health threat. Zn(II)-dependent or metallo-β-lactamases (MBLs) produced by these bacteria inactivate most β-lactam antibiotics, including the carbapenems, which are "last line therapies" for life-threatening Gram-negative infections. NDM-1 is a carbapenemase belonging to the MBL family that is rapidly spreading worldwide. Regrettably, inhibitors of MBLs are not yet developed. Here we present the bisthiazolidine (BTZ) scaffold as a structure with some features of β-lactam substrates, which can be modified with metal-binding groups to target the MBL active site. Inspired by known interactions of MBLs with β-lactams, we designed four BTZs that behave as in vitro NDM-1 inhibitors with Ki values in the low micromolar range (from 7 ± 1 to 19 ± 3 μM). NMR spectroscopy demonstrated that they inhibit hydrolysis of imipenem in NDM-1-producing Escherichia coli. In vitro time kill cell-based assays against a variety of bacterial strains harboring blaNDM-1 including Acinetobacter baumannii show that the compounds restore the antibacterial activity of imipenem. A crystal structure of the most potent heterocycle (L-CS319) in complex with NDM-1 at 1.9 Å resolution identified both structural determinants for inhibitor binding and opportunities for further improvements in potency.
Collapse
Affiliation(s)
- Mariano M. González
- Instituto de Biologı́a Molecular y Celular
de Rosario (IBR-CONICET), Facultad de Ciencias Bioquı́micas
y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo
y Esmeralda, 2000 Rosario, Argentina
| | - Magda Kosmopoulou
- School of Cellular
and Molecular Medicine, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Maria F. Mojica
- Research
Service, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, and Departments of Pharmacology, Biochemistry, Microbiology,
and Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Valerie Castillo
- Laboratorio de Quı́mica Farmacéutica,
Facultad de Quı́mica, Universidad de la República (UdelaR), Montevideo 11800, Uruguay
| | - Philip Hinchliffe
- School of Cellular
and Molecular Medicine, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ilaria Pettinati
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Jürgen Brem
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Christopher J. Schofield
- Department
of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Graciela Mahler
- Laboratorio de Quı́mica Farmacéutica,
Facultad de Quı́mica, Universidad de la República (UdelaR), Montevideo 11800, Uruguay
| | - Robert A. Bonomo
- Research
Service, Louis Stokes Cleveland Department of Veterans Affairs Medical
Center, and Departments of Pharmacology, Biochemistry, Microbiology,
and Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Leticia I. Llarrull
- Instituto de Biologı́a Molecular y Celular
de Rosario (IBR-CONICET), Facultad de Ciencias Bioquı́micas
y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo
y Esmeralda, 2000 Rosario, Argentina
| | - James Spencer
- School of Cellular
and Molecular Medicine, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Alejandro J. Vila
- Instituto de Biologı́a Molecular y Celular
de Rosario (IBR-CONICET), Facultad de Ciencias Bioquı́micas
y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo
y Esmeralda, 2000 Rosario, Argentina
| |
Collapse
|
38
|
Structural Basis of Metallo-β-Lactamase Inhibition by Captopril Stereoisomers. Antimicrob Agents Chemother 2015; 60:142-50. [PMID: 26482303 PMCID: PMC4704194 DOI: 10.1128/aac.01335-15] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/03/2015] [Indexed: 11/20/2022] Open
Abstract
β-Lactams are the most successful antibacterials, but their effectiveness is threatened by resistance, most importantly by production of serine- and metallo-β-lactamases (MBLs). MBLs are of increasing concern because they catalyze the hydrolysis of almost all β-lactam antibiotics, including recent-generation carbapenems. Clinically useful serine-β-lactamase inhibitors have been developed, but such inhibitors are not available for MBLs. l-Captopril, which is used to treat hypertension via angiotensin-converting enzyme inhibition, has been reported to inhibit MBLs by chelating the active site zinc ions via its thiol(ate). We report systematic studies on B1 MBL inhibition by all four captopril stereoisomers. High-resolution crystal structures of three MBLs (IMP-1, BcII, and VIM-2) in complex with either the l- or d-captopril stereoisomer reveal correlations between the binding mode and inhibition potency. The results will be useful in the design of MBL inhibitors with the breadth of selectivity required for clinical application against carbapenem-resistant Enterobacteriaceae and other organisms causing MBL-mediated resistant infections.
Collapse
|