1
|
Leone FA, Fabri LM, Costa MIC, Moraes CM, Garçon DP, McNamara JC. Differential effects of cobalt ions in vitro on gill (Na +, K +)-ATPase kinetics in the Blue crab Callinectes danae (Decapoda, Brachyura). Comp Biochem Physiol C Toxicol Pharmacol 2023; 274:109757. [PMID: 37741603 DOI: 10.1016/j.cbpc.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
We used the gill (Na+, K+)-ATPase as a molecular marker to provide a comprehensive kinetic analysis of the effects of Co2+in vitro on the modulation of K+-phosphatase activity in the Blue crab Callinectes danae. Co2+ can stimulate or inhibit K+-phosphatase activity. With Mg2+, K+-phosphatase activity is almost completely inhibited by Co2+. Co2+ stimulates K+-phosphatase activity similarly to Mg2+ although with a ≈4.5-fold greater affinity. At saturating Mg2+ concentrations, Mg2+ displaces bound Co2+ from the Mg2+-binding site in a concentration dependent manner, but Co2+ cannot displace Mg2+ from its binding site even at millimolar concentrations. Saturation by Co2+ of the Mg2+ binding site does not affect pNPP recognition by the enzyme. Substitution of Mg2+ by Co2+ slightly increases enzyme affinity for K+ and NH4+. Independently of Mg2+, inhibition by ouabain or sodium ions is unaffected by Co2+. Investigation of gill (Na+, K+)-ATPase K+-phosphatase activity provides a reliable tool to examine the kinetic effects of Co2+ with and without Na+ and ATP. Given that the toxic effects of Co2+ at the molecular level are poorly understood, these findings advance our knowledge of the mechanism of action of Co2+ on the crustacean gill (Na+, K+)-ATPase.
Collapse
Affiliation(s)
- Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Maria I C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | | | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil. https://twitter.com/@maracoani
| |
Collapse
|
2
|
External Ion Access in the Na/K Pump: Kinetics of Na +, K +, and Quaternary Amine Interaction. Biophys J 2019; 115:361-374. [PMID: 30021111 DOI: 10.1016/j.bpj.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 06/06/2018] [Indexed: 11/23/2022] Open
Abstract
Na/K pumps build essential ion gradients across the plasmalemma of animal cells by coupling the extrusion of three Na+, with the import of two K+ and the hydrolysis of one ATP molecule. The mechanisms of selectivity and competition between Na+, K+, and inhibitory amines remain unclear. We measured the effects of external tetrapropylammonium (TPA+) and ethylenediamine (EDA2+) on three different Na/K pump transport modes in voltage-clamped Xenopus oocytes: 1) outward pump current (IP), 2) passive inward H+ current at negative voltages without Na+ or K+ (IH), and 3) transient charge movement reporting the voltage-dependent extracellular binding/release of Na+ (QNa). Both amines competed with K+ to inhibit IP. TPA+ inhibited IH without competing with H+, whereas EDA2+ did not alter IH at pH 7.6. TPA+ competed with Na+ in QNa measurements, reducing Na+-apparent affinity, evidenced by a ∼-75 mV shift in the charge-voltage curve (at 20 mM TPA+) without reduction of the total charge moved (Qtot). In contrast, EDA2+ and K+ did not compete with Na+ to inhibit QNa; both reduced Qtot without decreasing Na+-apparent affinity. EDA2+ (15 mM) right-shifted the charge-voltage curve by ∼+50 mV. Simultaneous occlusion of EDA2+ and Na+ by an E2P conformation unable to reach E1P was demonstrated by voltage-clamp fluorometry. Trypsinolysis experiments showed that EDA2+-bound pumps are much more proteolysis-resistant than Na+-, K+-, or TPA+-bound pumps, therefore uncovering unique EDA2+-bound conformations. K+ effects on QNa and IH were also evaluated in pumps inhibited with beryllium fluoride, a phosphate mimic. K+ reduced Qtot without shifting the charge-voltage curve, indicating noncompetitive effects, and partially inhibited IH to the same extent as TPA+ in non-beryllium-fluorinated pumps. These results demonstrate that K+ interacts with beryllium-fluorinated pumps inducing conformational changes that alter QNa and IH, suggesting that there are two external access pathways for proton transport by IH.
Collapse
|
3
|
Sundell K, Wrange AL, Jonsson PR, Blomberg A. Osmoregulation in Barnacles: An Evolutionary Perspective of Potential Mechanisms and Future Research Directions. Front Physiol 2019; 10:877. [PMID: 31496949 PMCID: PMC6712927 DOI: 10.3389/fphys.2019.00877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Barnacles form a globally ubiquitous group of sessile crustaceans that are particularly common in the coastal intertidal. Several barnacle species are described as highly euryhaline and a few species even have the ability to colonize estuarine and brackish habitats below 5 PSU. However, the physiological and/or morphological adaptations that allow barnacles to live at low salinities are poorly understood and current knowledge is largely based on classical eco-physiological studies offering limited insight into the molecular mechanisms. This review provides an overview of available knowledge of salinity tolerance in barnacles and what is currently known about their osmoregulatory strategies. To stimulate future studies on barnacle euryhalinity, we briefly review and compare barnacles to other marine invertebrates with known mechanisms of osmoregulation with focus on crustaceans. Different mechanisms are described based on the current understanding of molecular biology and integrative physiology of osmoregulation. We focus on ion and water transport across epithelial cell layers, including transport mechanisms across cell membranes and paracellular transfer across tight junctions as well as on the use of intra- and extracellular osmolytes. Based on this current knowledge, we discuss the osmoregulatory mechanisms possibly present in barnacles. We further discuss evolutionary consequences of barnacle osmoregulation including invasion-success in new habitats and life-history evolution. Tolerance to low salinities may play a crucial role in determining future distributions of barnacles since forthcoming climate-change scenarios predict decreased salinity in shallow coastal areas. Finally, we outline future research directions to identify osmoregulatory tissues, characterize physiological and molecular mechanisms, and explore ecological and evolutionary implications of osmoregulation in barnacles.
Collapse
Affiliation(s)
- Kristina Sundell
- Department of Biological and Environmental Sciences and Swedish Mariculture Research Center (SWEMARC), University of Gothenburg, Gothenburg, Sweden
| | - Anna-Lisa Wrange
- IVL Swedish Environmental Research Institute, Fiskebäckskil, Sweden
| | - Per R Jonsson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Anders Blomberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Meyer DJ, Gatto C, Artigas P. Na/K Pump Mutations Associated with Primary Hyperaldosteronism Cause Loss of Function. Biochemistry 2019; 58:1774-1785. [PMID: 30811176 DOI: 10.1021/acs.biochem.9b00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Primary hyperaldosteronism (Conn's syndrome), a common cause of secondary hypertension, is frequently produced by unilateral aldosterone-producing adenomas that carry mutations in ion-transporting genes, including ATP1A1, encoding the Na/K pump's α1 subunit. Whether Na/K pump mutant-mediated inward currents are required to depolarize the cell and increase aldosterone production remains unclear, as such currents were observed in four out of five mutants described so far. Here, we use electrophysiology and uptake of the K+ congener 86Rb+, to characterize the effects of eight additional Na/K pump mutations in transmembrane segments TM1 (delM102-L103, delL103-L104, and delM102-I106), TM4 (delI322-I325 and I327S), and TM9 (delF956-E961, delF959-E961, and delE960-L964), expressed in Xenopus oocytes. All deletion mutants induced abnormal inward currents of different amplitudes at physiological voltages, while I327S lacked such currents. A detailed functional characterization revealed that I327S significantly reduces intracellular Na+ affinity without altering affinity for external K+. 86Rb+-uptake experiments show that I327S dramatically impairs function under physiological concentrations of Na+ and K+. Since Na/K pumps in the adrenal cortex may be formed by association of α1 with β3 instead of β1 subunits, we evaluated whether G99R (another mutant without inward currents when associated with β1) would show inward currents when associated with β3. We found that the kinetic characteristics of either mutant or wild-type α1β3 pumps expressed in Xenopus oocytes to be indistinguishable from those of α1β1 pumps. The observed functional consequences of each hyperaldosteronism mutant point to the loss of Na/K pump function as the common feature of all mutants, which is sufficient to induce hyperaldosteronism.
Collapse
Affiliation(s)
- Dylan J Meyer
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| | - Craig Gatto
- School of Biological Sciences , Illinois State University , Normal , Illinois 61790 , United States
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research , Texas Tech University Health Sciences Center , Lubbock , Texas 79430 , United States
| |
Collapse
|
5
|
Farias DL, Lucena MN, Garçon DP, Mantelatto FL, McNamara JC, Leone FA. A Kinetic Characterization of the Gill (Na +, K +)-ATPase from the Semi-terrestrial Mangrove Crab Cardisoma guanhumi Latreille, 1825 (Decapoda, Brachyura). J Membr Biol 2017; 250:517-534. [PMID: 28840273 DOI: 10.1007/s00232-017-9978-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/09/2017] [Indexed: 11/25/2022]
Abstract
We provide a kinetic characterization of (Na+, K+)-ATPase activity in a posterior gill microsomal fraction from the semi-terrestrial mangrove crab Cardisoma guanhumi. Sucrose density gradient centrifugation reveals two distinct membrane fractions showing considerable (Na+, K+)-ATPase activity, but also containing other microsomal ATPases. The (Na+, K+)-ATPase, notably immuno-localized to the apical region of the epithelial pillar cells, and throughout the pillar cell bodies, has an M r of around 110 kDa and hydrolyzes ATP with V M = 146.8 ± 6.3 nmol Pi min-1 mg protein-1 and K M = 0.05 ± 0.003 mmol L-1 obeying Michaelis-Menten kinetics. While stimulation by Na+ (V M = 139.4 ± 6.9 nmol Pi min-1 mg protein-1, K M = 4.50 ± 0.22 mmol L-1) also follows Michaelis-Menten kinetics, modulation of (Na+, K+)-ATPase activity by MgATP (V M = 136.8 ± 6.5 nmol Pi min-1 mg protein-1, K 0.5 = 0.27 ± 0.04 mmol L-1), K+ (V M = 140.2 ± 7.0 nmol Pi min-1 mg protein-1, K 0.5 = 0.17 ± 0.008 mmol L-1), and NH4+ (V M = 149.1 ± 7.4 nmol Pi min-1 mg protein-1, K 0.5 = 0.60 ± 0.03 mmol L-1) shows cooperative kinetics. Ouabain (K I = 52.0 ± 2.6 µmol L-1) and orthovanadate (K I = 1.0 ± 0.05 µmol L-1) inhibit total ATPase activity by around 75%. At low Mg2+ concentrations, ATP is an allosteric modulator of the enzyme. This is the first study to provide a kinetic characterization of the gill (Na+, K+)-ATPase in C. guanhumi, and will be useful in better comprehending the biochemical underpinnings of osmoregulatory ability in a semi-terrestrial mangrove crab.
Collapse
Affiliation(s)
- Daniel L Farias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil
| | - Daniela P Garçon
- DPG, Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, Iturama, Minas Gerais, 38280-000, Brazil
| | - Fernando L Mantelatto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, 14040-901, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, 14040-901, Brazil
- Centro de Biologia Marinha, São Sebastião, SP, 11000-600, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil.
| |
Collapse
|
6
|
Garcia A, Pratap PR, Lüpfert C, Cornelius F, Jacquemin D, Lev B, Allen TW, Clarke RJ. The voltage-sensitive dye RH421 detects a Na + ,K + -ATPase conformational change at the membrane surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:813-823. [DOI: 10.1016/j.bbamem.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
|
7
|
|
8
|
Abstract
Since the beginning of investigations of the Na,K-ATPase, it has been well-known that Mg2+ is an essential cofactor for activation of enzymatic ATP hydrolysis without being transported through the cell membrane. Moreover, experimental evidence has been collected through the years that shows that Mg2+ ions have a regulatory effect on ion transport by interacting with the cytoplasmic side of the ion pump. Our experiments allowed us to reveal the underlying mechanism. Mg2+ is able to bind to a site outside the membrane domain of the protein's α subunit, close to the entrance of the access channel to the ion-binding sites, thus modifying the local concentration of the ions in the electrolyte, of which Na+, K+, and H+ are of physiological interest. The decrease in the concentration of these cations can be explained by electrostatic interaction and estimated by the Debye-Hückel theory. This effect provokes the observed apparent reduction of the binding affinity of the binding sites of the Na,K-ATPase in the presence of various Mg2+ concentrations. The presence of the bound Mg2+, however, does not affect the reaction kinetics of the transport function of the ion pump. Therefore, stopped-flow experiments could be performed to gain the first insight into the Na+ binding kinetics on the cytoplasmic side by Mg2+ concentration jump experiments.
Collapse
Affiliation(s)
- Hans-Jürgen Apell
- Department of Biology, University of Konstanz , 78464 Konstanz, Germany
| | - Tanja Hitzler
- Department of Biology, University of Konstanz , 78464 Konstanz, Germany
| | - Grischa Schreiber
- Department of Biology, University of Konstanz , 78464 Konstanz, Germany
| |
Collapse
|