1
|
Kyrychenko A, Ladokhin AS. Fluorescent Probes and Quenchers in Studies of Protein Folding and Protein-Lipid Interactions. CHEM REC 2024; 24:e202300232. [PMID: 37695081 PMCID: PMC11113672 DOI: 10.1002/tcr.202300232] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Fluorescence spectroscopy provides numerous methodological tools for structural and functional studies of biological macromolecules and their complexes. All fluorescence-based approaches require either existence of an intrinsic probe or an introduction of an extrinsic one. Moreover, studies of complex systems often require an additional introduction of a specific quencher molecule acting in combination with a fluorophore to provide structural or thermodynamic information. Here, we review the fundamentals and summarize the latest progress in applications of different classes of fluorescent probes and their specific quenchers, aimed at studies of protein folding and protein-membrane interactions. Specifically, we discuss various environment-sensitive dyes, FRET probes, probes for short-distance measurements, and several probe-quencher pairs for studies of membrane penetration of proteins and peptides. The goals of this review are: (a) to familiarize the readership with the general concept that complex biological systems often require both a probe and a quencher to decipher mechanistic details of functioning and (b) to provide example of the immediate applications of the described methods.
Collapse
Affiliation(s)
- Alexander Kyrychenko
- Institute of Chemistry and School of Chemistry, V. N. Karazin Kharkiv National University, 4 Svobody sq., Kharkiv, 61022, Ukraine
| | - Alexey S Ladokhin
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, United States
| |
Collapse
|
2
|
Chumchoochart W, Chandet N, Saenjum C, Tinoi J. Important Role and Properties of Granular Nanocellulose Particles in an In Vitro Simulated Gastrointestinal System and in Lipid Digestibility and Permeability. Biomolecules 2023; 13:1479. [PMID: 37892161 PMCID: PMC10604528 DOI: 10.3390/biom13101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
This research evaluated the role and feasibility of the granular nanocellulose particles (GNC) from sugarcane bagasse obtained from enzymatic hydrolysis in reducing lipid digestibility and permeability in an in vitro simulated gastrointestinal (GI) system. GNC concentration (0.02%, w/v) had significantly affected the released free fatty acids (FFA), with a reduction of approximately 20%. Pickering emulsion of a GNC and olive oil simulation mixture revealed higher oil droplet size distribution and stability in the initial stage than the vortexed mixture formation. The difference in particle size distribution and zeta potential of the ingested GNC suspension and GNC-olive oil emulsion were displayed during the in vitro gastrointestinal simulation. GNC particles interacted and distributed surrounding the oil droplet, leading to interfacial emulsion. The GNC concentration (0.01-0.10%, w/v) showed low toxicity on HIEC-6 cells, ranging from 80.0 to 99% of cell viability. The release of FFA containing the ingested GNC suspension and GNC-olive oil emulsion had about a 30% reduction compared to that without the GNC digestion solution. The FFA and triglyceride permeability through the HIEC-6 intestinal epithelium monolayer were deceased in the digesta containing the ingested GNC and emulsion. This work indicated that GNC represented a significantly critical role and properties in the GI tract and reduced lipid digestion and absorption. This GNC could be utilized as an alternative food additive or supplement in fatty food for weight control due to their inhibition of lipid digestibility and assimilation.
Collapse
Affiliation(s)
- Warathorn Chumchoochart
- Interdisciplinary Program in Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nopakarn Chandet
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chalermpong Saenjum
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Jidapha Tinoi
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Iversen JF, Bohr SSR, Pinholt HD, Moses ME, Iversen L, Christensen SM, Hatzakis NS, Zhang M. Single-Particle Tracking of Thermomyces lanuginosus Lipase Reveals How Mutations in the Lid Region Remodel Its Diffusion. Biomolecules 2023; 13:biom13040631. [PMID: 37189378 DOI: 10.3390/biom13040631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
The function of most lipases is controlled by the lid, which undergoes conformational changes at a water–lipid interface to expose the active site, thus activating catalysis. Understanding how lid mutations affect lipases’ function is important for designing improved variants. Lipases’ function has been found to correlate with their diffusion on the substrate surface. Here, we used single-particle tracking (SPT), a powerful tool for deciphering enzymes’ diffusional behavior, to study Thermomyces lanuginosus lipase (TLL) variants with different lid structures in a laundry-like application condition. Thousands of parallelized recorded trajectories and hidden Markov modeling (HMM) analysis allowed us to extract three interconverting diffusional states and quantify their abundance, microscopic transition rates, and the energy barriers for sampling them. Combining those findings with ensemble measurements, we determined that the overall activity variation in the application condition is dependent on surface binding and lipase mobility when bound. Specifically, the L4 variant with a TLL-like lid and wild-type (WT) TLL displayed similar ensemble activity, but WT bound stronger to the surface than L4, while L4 had a higher diffusion coefficient and thus activity when bound to the surface. These mechanistic elements can only be de-convoluted by our combined assays. Our findings offer fresh perspectives on the development of the next iteration of enzyme-based detergent.
Collapse
Affiliation(s)
- Josephine F. Iversen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Søren S.-R. Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Henrik D. Pinholt
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | - Nikos S. Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Min Zhang
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
4
|
Zhang J, Wang Z, Zhuang W, Rabiee H, Zhu C, Deng J, Ge L, Ying H. Amphiphilic Nanointerface: Inducing the Interfacial Activation for Lipase. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39622-39636. [PMID: 35980131 DOI: 10.1021/acsami.2c11500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Graphene-based materials are widely used in the field of immobilized enzymes due to their easily tunable interfacial properties. We designed amphiphilic nanobiological interfaces between graphene oxide (GO) and lipase TL (Thermomyces lanuginosus) with tunable reduction degrees through molecular dynamics simulations and a facile chemical modulation, thus revealing the optimal interface for the interfacial activation of lipase TL and addressing the weakness of lipase TL, which exhibits weak catalytic activity due to an inconspicuous active site lid. It was demonstrated that the reduced graphene oxide (rGO) after 4 h of ascorbic acid reduction could boost the relative enzyme activity of lipase TL to reach 208%, which was 48% higher than the pristine GO and 120% higher than the rGO after 48 h of reduction. Moreover, TL-GO-4 h's tolerance against heat, organic solvent, and long-term storage environment was higher than that of free TL. The drawbacks of strong hydrophobic nanomaterials on lipase production were explored in depth with the help of molecular dynamics simulations, which explained the mechanism of enzyme activity enhancement. We demonstrated that nanomaterials with certain hydrophilicity could facilitate the lipase to undergo interfacial activation and improve its stability and protein loading rate, displaying the potential of the extensive application.
Collapse
Affiliation(s)
- Jihang Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Zhaoxin Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Hesamoddin Rabiee
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chenjie Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Jiawei Deng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Lei Ge
- Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Hanjie Ying
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Chen G, Khan IM, He W, Li Y, Jin P, Campanella OH, Zhang H, Huo Y, Chen Y, Yang H, Miao M. Rebuilding the lid region from conformational and dynamic features to engineering applications of lipase in foods: Current status and future prospects. Compr Rev Food Sci Food Saf 2022; 21:2688-2714. [PMID: 35470946 DOI: 10.1111/1541-4337.12965] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
The applications of lipases in esterification, amidation, and transesterification have broadened their potential in the production of fine compounds with high cumulative values. Mostly, the catalytic triad of lipases is covered by either one or two mobile peptides called the "lid" that control the substrate channel to the catalytic center. The lid holds unique conformational allostery via interfacial activation to regulate the dynamics and catalytic functions of lipases, thereby highlighting its importance in redesigning these enzymes for industrial applications. The structural characteristic of lipase, the dynamics of lids, and the roles of lid in lipase catalysis were summarized, providing opportunities for rebuilding lid region by biotechniques (e.g., metagenomic technology and protein engineering) and enzyme immobilization. The review focused on the advantages and disadvantages of strategies rebuilding the lid region. The main shortcomings of biotechnologies on lid rebuilding were discussed such as negative effects on lipase (e.g., a decrease of activity). Additionally, the main shortcomings (e.g., enzyme desorption at high temperatre) in immobilization on hydrophobic supports via interfacial action were presented. Solutions to the mentioned problems were proposed by combinations of computational design with biotechnologies, and improvements of lipase immobilization (e.g., immobilization protocols and support design). Finally, the review provides future perspectives about designing hyperfunctional lipases as biocatalysts in the food industry based on lid conformation and dynamics.
Collapse
Affiliation(s)
- Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wensen He
- School of Food Science and Technology, Jiangsu University, Zhenjiang, China
| | - Yongxin Li
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Peng Jin
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Department of Food Science and Technology, Ohio State University, Columbus, Ohio, USA
| | - Haihua Zhang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yanrong Huo
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Yang Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Current Trends in Acetins Production: Green versus Non-Green Synthesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072255. [PMID: 35408654 PMCID: PMC9000466 DOI: 10.3390/molecules27072255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/16/2022]
Abstract
To utilize excess glycerol produced from the biodiesel industry, researchers are developing innovative methods of transforming glycerol into value-added chemicals. One strategy adopted is the conversion of glycerol into acetins, which are esters of glycerol that have wide applications in cosmetics, pharmaceuticals, food and fuel additives, and plasticizers and serve as precursors for other chemical compounds. Acetins are synthesized either by traditional chemical methods or by biological processes. Although the chemical methods are efficient, productive, and commercialized, they are "non-green", meaning that they are unsafe for the environment and consumers. On the other hand, the biological process is "green" in the sense that it protects both the environment and consumers. It is, however, less productive and requires further effort to achieve commercialization. Thus, both methodologies have benefits and drawbacks, and this study aims to present and discuss these. In addition, we briefly discuss general strategies for optimizing biological processes that could apply to acetins production on an industrial scale.
Collapse
|
7
|
Bohr SSR, Thorlaksen C, Kühnel RM, Günther-Pomorski T, Hatzakis NS. Label-Free Fluorescence Quantification of Hydrolytic Enzyme Activity on Native Substrates Reveals How Lipase Function Depends on Membrane Curvature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6473-6481. [PMID: 32437165 DOI: 10.1021/acs.langmuir.0c00787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipases are important hydrolytic enzymes used in a spectrum of technological applications, such as the pharmaceutical and detergent industries. Because of their versatile nature and ability to accept a broad range of substrates, they have been extensively used for biotechnological and industrial applications. Current assays to measure lipase activity primarily rely on low-sensitivity measurements of pH variations or visible changes of material properties, like hydration, and often require high amounts of proteins. Fluorescent readouts, on the other hand, offer high contrast and even single-molecule sensitivity, albeit they are reliant on fluorogenic substrates that structurally resemble the native ones. Here we present a method that combines the highly sensitive readout of fluorescent techniques while reporting enzymatic lipase function on native substrates. The method relies on embedding the environmentally sensitive fluorescent dye pHrodo and native substrates into the bilayer of liposomes. The charged products of the enzymatic hydrolysis alter the local membrane environment and thus the fluorescence intensity of pHrodo. The fluorescence can be accurately quantified and directly assigned to product formation and thus enzymatic activity. We illustrated the capacity of the assay to report the function of diverse lipases and phospholipases both in a microplate setup and at the single-particle level on individual nanoscale liposomes using total internal reflection fluorescence (TIRF). The parallelized sensitive readout of microscopy combined with the inherent polydispersity in sizes of liposomes allowed us to screen the effect of membrane curvature on lipase function and identify how mutations in the lid region control the membrane curvature-dependent activity. We anticipate this methodology to be applicable for sensitive activity readouts for a spectrum of enzymes where the product of the enzymatic reaction is charged.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| | - Camilla Thorlaksen
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
- Biophysics, Novo Nordisk A/S, Novo Nordisk Park 1, Maaloev 2760, Denmark
- Drug Delivery and Biophysics of Biopharmaceuticals, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark
| | - Ronja Marie Kühnel
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
| | - Thomas Günther-Pomorski
- Faculty of Chemistry and Biochemistry, Department of Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C 1871, Denmark
- Novo Nordisk Center for Protein Research (CPR), University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark
| |
Collapse
|
8
|
Kim HJ, Lee BJ, Kwon AR. The grease trap: uncovering the mechanism of the hydrophobic lid in Cutibacterium acnes lipase. J Lipid Res 2020; 61:722-733. [PMID: 32165394 PMCID: PMC7193963 DOI: 10.1194/jlr.ra119000279] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/05/2020] [Indexed: 01/07/2023] Open
Abstract
Acne is one of the most common dermatological conditions, but the details of its pathology are unclear, and current management regimens often have adverse effects. Cutibacterium acnes is known as a major acne-associated bacterium that derives energy from lipase-mediated sebum lipid degradation. C. acnes is commensal, but lipase activity has been observed to differ among C. acnes types. For example, higher populations of the type IA strains are present in acne lesions with higher lipase activity. In the present study, we examined a conserved lipase in types IB and II that was truncated in type IA C. acnes strains. Closed, blocked, and open structures of C. acnes ATCC11828 lipases were elucidated by X-ray crystallography at 1.6-2.4 Å. The closed crystal structure, which is the most common form in aqueous solution, revealed that a hydrophobic lid domain shields the active site. By comparing closed, blocked, and open structures, we found that the lid domain-opening mechanisms of C. acnes lipases (CAlipases) involve the lid-opening residues, Phe-179 and Phe-211. To the best of our knowledge, this is the first structure-function study of CAlipases, which may help to shed light on the mechanisms involved in acne development and may aid in future drug design.
Collapse
Affiliation(s)
- Hyo Jung Kim
- College of Pharmacy,Woosuk University, Wanju 55338, Republic of Korea,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ae-Ran Kwon
- Department of Beauty Care, College of Medical Science, Deagu Haany University, Gyeongsan 38610, Republic of Korea,To whom correspondence should be addressed. e-mail:
| |
Collapse
|
9
|
Lokha Y, Arana-Peña S, Rios NS, Mendez-Sanchez C, Gonçalves LR, Lopez-Gallego F, Fernandez-Lafuente R. Modulating the properties of the lipase from Thermomyces lanuginosus immobilized on octyl agarose beads by altering the immobilization conditions. Enzyme Microb Technol 2020; 133:109461. [DOI: 10.1016/j.enzmictec.2019.109461] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
|
10
|
Bohr SSR, Lund PM, Kallenbach AS, Pinholt H, Thomsen J, Iversen L, Svendsen A, Christensen SM, Hatzakis NS. Direct observation of Thermomyces lanuginosus lipase diffusional states by Single Particle Tracking and their remodeling by mutations and inhibition. Sci Rep 2019; 9:16169. [PMID: 31700110 PMCID: PMC6838188 DOI: 10.1038/s41598-019-52539-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipases are interfacially activated enzymes that catalyze the hydrolysis of ester bonds and constitute prime candidates for industrial and biotechnological applications ranging from detergent industry, to chiral organic synthesis. As a result, there is an incentive to understand the mechanisms underlying lipase activity at the molecular level, so as to be able to design new lipase variants with tailor-made functionalities. Our understanding of lipase function primarily relies on bulk assay averaging the behavior of a high number of enzymes masking structural dynamics and functional heterogeneities. Recent advances in single molecule techniques based on fluorogenic substrate analogues revealed the existence of lipase functional states, and furthermore so how they are remodeled by regulatory cues. Single particle studies of lipases on the other hand directly observed diffusional heterogeneities and suggested lipases to operate in two different modes. Here to decipher how mutations in the lid region controls Thermomyces lanuginosus lipase (TLL) diffusion and function we employed a Single Particle Tracking (SPT) assay to directly observe the spatiotemporal localization of TLL and rationally designed mutants on native substrate surfaces. Parallel imaging of thousands of individual TLL enzymes and HMM analysis allowed us to observe and quantify the diffusion, abundance and microscopic transition rates between three linearly interconverting diffusional states for each lipase. We proposed a model that correlate diffusion with function that allowed us to predict that lipase regulation, via mutations in lid region or product inhibition, primarily operates via biasing transitions to the active states.
Collapse
Affiliation(s)
- Søren S-R Bohr
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Philip M Lund
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Amalie S Kallenbach
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Henrik Pinholt
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Johannes Thomsen
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Lars Iversen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | - Allan Svendsen
- Novozymes A/S, Krogshøjsvej 36, DK 2880, Bagværd, Denmark
| | | | - Nikos S Hatzakis
- Department of Chemistry & Nanoscience Center, Thorvaldsensvej 40, University of Copenhagen, Frederiksberg C, 1871, Denmark.
- NovoNordisk center for protein research, Novo Nordisk Foundation Centre for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
11
|
Hjörleifsson JG, Ásgeirsson B. Chloride promotes refolding of active Vibrio alkaline phosphatase through an inactive dimeric intermediate with an altered interface. FEBS Open Bio 2018; 9:169-184. [PMID: 30652084 PMCID: PMC6325577 DOI: 10.1002/2211-5463.12565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/15/2022] Open
Abstract
Most enzymes are homodimers or higher order multimers. Cold‐active alkaline phosphatase from Vibrio splendidus (VAP) transitions into a dimer with very low activity under mild denaturation conditions. The desire to understand why this dimer fails to efficiently catalyse phosphomonoester hydrolysis led us to investigate interfacial communication between subunits. Here, we studied in detail the unfolding mechanism at two pH values and in the presence or absence of sodium chloride. At pH 8.0, the denaturation model had to include an inactive dimer intermediate and follow the pathway: N2 → I2 → 2U. At pH 10.5, the model was of a two‐state nature. Enzyme activity was not recovered under several examined refolding conditions. However, in the presence of 0.5 m NaCl, the enzyme was nearly fully reactivated after urea treatment. Thermal inactivation experiments were biphasic where the inactivation could be detected using CD spectroscopy at 190–200 nm. By incorporating a bimane fluorescence probe at the dimer interface, we could monitor inactivation/denaturation at two distinct sites at the dimer interface. A change in bimane fluorescence at both sites was observed during inactivation, but prior to the global unfolding event. Furthermore, the rate of change in bimane fluorescence correlated with inactivation rates at 40 °C. These results indicate and support the hypothesis that the subunits of VAP are only functional in the dimeric state due to the cooperative nature of the reaction mechanism when proper crosstalk between subunits is facilitated.
Collapse
Affiliation(s)
| | - Bjarni Ásgeirsson
- Department of Biochemistry, Science Institute University of Iceland Reykjavik Iceland
| |
Collapse
|
12
|
Lotti M, Pleiss J, Valero F, Ferrer P. Enzymatic Production of Biodiesel: Strategies to Overcome Methanol Inactivation. Biotechnol J 2018; 13:e1700155. [PMID: 29461685 DOI: 10.1002/biot.201700155] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/10/2018] [Indexed: 01/15/2023]
Abstract
Lipase-catalyzed transesterification of triglycerides and alcohols to obtain biodiesel is an environmentally friendly and sustainable route for fuels production since, besides proceeding in mild reaction conditions, it allows for the use of low-cost feedstocks that contain water and free fatty acids, for example non-edible oils and waste oils. This review article reports recent advances in the field and focus in particular on a major issue in the enzymatic process, the inactivation of most lipases caused by methanol, the preferred acyl acceptor used for alcoholysis. The recent results about immobilization of enzymes on nano-materials and the use of whole-cell biocatalysts, as well as the use of cell-surface display technologies and metabolic engineering strategies for microbial production of biodiesel are described. It is discussed also insight into the effects of methanol on lipases obtained by modeling approaches and report on studies aimed at mining novel alcohol stable enzymes or at improving robustness in existing ones by protein engineering.
Collapse
Affiliation(s)
- Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
13
|
Willems N, Lelimousin M, Skjold-Jørgensen J, Svendsen A, Sansom MS. The effect of mutations in the lid region of Thermomyces lanuginosus lipase on interactions with triglyceride surfaces: A multi-scale simulation study. Chem Phys Lipids 2018; 211:4-15. [DOI: 10.1016/j.chemphyslip.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/25/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
|
14
|
Probing the interaction of copper cofactor and azachalcone substrate with G-quadruplex of DNA based Diels-Alderase by site-specific fluorescence quenching titration. Biochimie 2018; 146:20-27. [DOI: 10.1016/j.biochi.2017.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/02/2017] [Indexed: 01/18/2023]
|
15
|
Stamm A, Svendsen A, Skjold-Jørgensen J, Vissing T, Berts I, Nylander T. The triolein/aqueous interface and lipase activity studied by spectroscopic ellipsometry and coarse grained simulations. Chem Phys Lipids 2017; 211:37-43. [PMID: 29129569 DOI: 10.1016/j.chemphyslip.2017.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/30/2017] [Indexed: 11/16/2022]
Abstract
In spite of the importance of the triglyceride aqueous interface for processes like emulsification, surfactant interactions and lipase activity, relatively little is known about this interface compared to that between alkanes and water. Here, the contact between triolein and water was investigated in terms of water inclusion in the oil phase and orientation of the molecules at the interface. Coarse grained models of triglycerides in contact with water were constructed and correlated with experimental results of the changes in thickness and refractive index, obtained using spectroscopic ellipsometry of spin-coated triolein films. The topography of the layer was revealed by atomic force microscopy. Dry triolein and a triolein sample after equilibration with water were also compared structurally using small-angle X-ray scattering. Additionally, the kinetics of adsorption/activity of three different variants of the Thermomyces lanuginosus lipase (TLL) were investigated. The results show that uptake of water in the triolein phase leads to increase in thickness of the layer. The observed increase of thickness was further enhanced by an active lipase but reduced when an inactive mutant of the enzyme was applied.
Collapse
Affiliation(s)
- Arne Stamm
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden; Novozymes A/S, Brudelysvej 26, DK-2880 Bagværd, Denmark
| | | | | | | | - Ida Berts
- Jülich Centre for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Tommy Nylander
- Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden.
| |
Collapse
|
16
|
Hall-Andersen J, Kaasgaard SG, Janfelt C. MALDI imaging of enzymatic degradation of glycerides by lipase on textile surface. Chem Phys Lipids 2017; 211:100-106. [PMID: 29122612 DOI: 10.1016/j.chemphyslip.2017.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/10/2023]
Abstract
Most modern laundry detergents contain enzymes such as proteases, amylases, and lipases for more efficient removal of stains containing proteins, carbohydrates, and lipids during wash at low temperature. The function of the lipases is to hydrolyse the hydrophobic triglycerides from fats and oils to the more hydrophilic lipids diglycerides, monoglycerides and free fatty acids. Here, we use MALDI imaging to study the effect of enzymatic degradation of triglycerides by lipases directly on the textile surface. Textile samples were created by using swatches of different textile blends, adding a lipid stain and simulating washing cycles using well-defined detergents with lipase concentrations ranging between 0 and 0.5ppm. After washing, the textile swatches as well as cryo-sections of the swatches were imaged using MALDI imaging in positive ion mode at pixel sizes of 15-75μm. Similar samples were imaged by DESI-MSI for comparison. Despite the rough surface and non-conductive nature of textile, MALDI imaging of glycerides on textile was readily possible. The results show extensive enzymatic degradation of triglycerides into diglycerides, and images suggest that this degradation takes place in a quite heterogeneous manner as also observed in images of cross-sections. DESI-imaging reveals the same kind of enzymatic degradation, but with a more homogeneous appearance. While the enzymatic degradation is exemplified in a few images, the overall degradations process was monitored by extraction of ion intensities from 298 individual ion masses of mono-, di- and triglycerides and free fatty acids. MALDI imaging of glycerides was possible directly from a textile surface, allowing visualization of the enzymatic degradation of fatty stains on textile during the laundry process. The images showed an inhomogeneous presence of diglycerides after lipase treatment both in planar images of the textile surface as well as in cross-sections suggesting a non-uniform enzyme effect or extraction of the lipase reaction products from the textile.
Collapse
Affiliation(s)
- Jonatan Hall-Andersen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Wei P, Sun FD, Zuo LM, Qu J, Chen P, Xu LD, Luo SZ. Critical residues and motifs for homodimerization of the first transmembrane domain of the plasma membrane glycoprotein CD36. J Biol Chem 2017; 292:8683-8693. [PMID: 28336533 DOI: 10.1074/jbc.m117.779595] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/09/2017] [Indexed: 12/19/2022] Open
Abstract
The plasma transmembrane (TM) glycoprotein CD36 is critically involved in many essential signaling processes, especially the binding/uptake of long-chain fatty acids and oxidized low-density lipoproteins. The association of CD36 potentially activates cytosolic protein tyrosine kinases that are thought to associate with the C-terminal cytoplasmic tail of CD36. To understand the mechanisms by which CD36 mediates ligand binding and signal transduction, we have characterized the homo-oligomeric interaction of CD36 TM domains in membrane environments and with molecular dynamics (MD) simulations. Analysis of pyrene- and coumarin-labeled TM1 peptides in SDS by FRET confirmed the homodimerization of the CD36 TM1 peptide. Homodimerization assays of CD36 TM domains with the TOXCAT technique showed that its first TM (TM1) domain, but not the second TM (TM2) domain, could homodimerize in a cell membrane. Small-residue, site-specific mutation scanning revealed that the CD36 TM1 dimerization is mediated by the conserved small residues Gly12, Gly16, Ala20, and Gly23 Furthermore, molecular dynamics (MD) simulation studies demonstrated that CD36 TM1 exhibited a switching dimerization with two right-handed packing modes driven by the 12GXXXGXXXA20 and 20AXXG23 motifs, and the mutational effect of G16I and G23I revealed these representative conformations of CD36 TM1. This packing switch pattern of CD36 TM1 homodimer was further examined and confirmed by FRET analysis of monobromobimane (mBBr)-labeled CD36 TM1 peptides. Overall, this work provides a structural basis for understanding the role of TM association in regulating signal transduction via CD36.
Collapse
Affiliation(s)
- Peng Wei
- From the Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,the School of Basic Medical Science, Beijing University of Chinese Medicine, Beijing 100029, China, and
| | - Fu-de Sun
- From the Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li-Min Zuo
- the Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Jing Qu
- From the Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Chen
- From the Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Li-da Xu
- From the Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- From the Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China,
| |
Collapse
|
18
|
Menny A, Lefebvre SN, Schmidpeter PA, Drège E, Fourati Z, Delarue M, Edelstein SJ, Nimigean CM, Joseph D, Corringer PJ. Identification of a pre-active conformation of a pentameric channel receptor. eLife 2017; 6. [PMID: 28294942 PMCID: PMC5398890 DOI: 10.7554/elife.23955] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/14/2017] [Indexed: 11/26/2022] Open
Abstract
Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical signaling through global allosteric transitions. Despite the existence of several high-resolution structures of pLGICs, their dynamical properties remain elusive. Using the proton-gated channel GLIC, we engineered multiple fluorescent reporters, each incorporating a bimane and a tryptophan/tyrosine, whose close distance causes fluorescence quenching. We show that proton application causes a global compaction of the extracellular subunit interface, coupled to an outward motion of the M2-M3 loop near the channel gate. These movements are highly similar in lipid vesicles and detergent micelles. These reorganizations are essentially completed within 2 ms and occur without channel opening at low proton concentration, indicating that they report a pre-active intermediate state in the transition pathway toward activation. This provides a template to investigate the gating of eukaryotic neurotransmitter receptors, for which intermediate states also participate in activation. DOI:http://dx.doi.org/10.7554/eLife.23955.001 In the nervous system, proteins of the pLGIC family are found in the membrane that surrounds each neuron. These proteins have channels that can allow ions to pass through the membrane and are responsible for transmitting electrical signals from one neuron to the next. Small molecules called neurotransmitters interact with the pLGICs to open or close the ion channel. If the ability of the pLGIC channels to open is altered, it can lead to behavioral changes like addiction, or diseases such as schizophrenia or epilepsy. For a pLGIC channel to switch between the “open” and “closed” states, specific parts of the protein need to move in relation to each other. However, to study these transitions researchers have previously relied on comparing the three-dimensional structures of open and closed pLGICs extracted out of the cell membrane. Different techniques are needed to directly follow these movements within membranes. Bacteria also have proteins belonging to the pLGIC family, and Menny et al. have now investigated one such bacterial protein to understand how pLGICs open. First, a small fluorescent molecule that glows differently if the environment around it changes was attached to various parts of the bacterial channel. These fluorescent markers revealed how several parts of the protein move and they also made it possible to measure how quickly these movements take place. Some of these movements happen before the channel opens, suggesting that the activation of this pLGIC protein happens in stages and involves the protein adopting a temporary intermediate state. The next step will be to better understand the structure of the intermediate state, which could help us to understand how pLGICs work in the nervous systems of animals. In future this may aid the design of new drugs that can modify the activity of these channels in patients with neurological conditions or addictions. DOI:http://dx.doi.org/10.7554/eLife.23955.002
Collapse
Affiliation(s)
- Anaïs Menny
- Channel Receptors Unit, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur, Paris, France
| | - Solène N Lefebvre
- Channel Receptors Unit, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Paris, France.,Université Pierre et Marie Curie, Cellule Pasteur, Paris, France
| | - Philipp Am Schmidpeter
- Departments of Anesthesiology, Physiology and Biophysics, Biochemistry, Weill Cornell Medicine, New York, United States
| | - Emmanuelle Drège
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Zaineb Fourati
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3528, Centre National de la Recherche Scientifique, Paris, France
| | - Marc Delarue
- Unité de Dynamique Structurale des Macromolécules, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3528, Centre National de la Recherche Scientifique, Paris, France
| | - Stuart J Edelstein
- Biologie Cellulaire de la Synapse, Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - Crina M Nimigean
- Departments of Anesthesiology, Physiology and Biophysics, Biochemistry, Weill Cornell Medicine, New York, United States
| | - Delphine Joseph
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, Châtenay-Malabry, France
| | - Pierre-Jean Corringer
- Channel Receptors Unit, Institut Pasteur, Paris, France.,Unité Mixte de Recherche 3571, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
19
|
Khan FI, Lan D, Durrani R, Huan W, Zhao Z, Wang Y. The Lid Domain in Lipases: Structural and Functional Determinant of Enzymatic Properties. Front Bioeng Biotechnol 2017; 5:16. [PMID: 28337436 PMCID: PMC5343024 DOI: 10.3389/fbioe.2017.00016] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lipases are important industrial enzymes. Most of the lipases operate at lipid–water interfaces enabled by a mobile lid domain located over the active site. Lid protects the active site and hence responsible for catalytic activity. In pure aqueous media, the lid is predominantly closed, whereas in the presence of a hydrophobic layer, it is partially opened. Hence, the lid controls the enzyme activity. In the present review, we have classified lipases into different groups based on the structure of lid domains. It has been observed that thermostable lipases contain larger lid domains with two or more helices, whereas mesophilic lipases tend to have smaller lids in the form of a loop or a helix. Recent developments in lipase engineering addressing the lid regions are critically reviewed here. After on, the dramatic changes in substrate selectivity, activity, and thermostability have been reported. Furthermore, improved computational models can now rationalize these observations by relating it to the mobility of the lid domain. In this contribution, we summarized and critically evaluated the most recent developments in experimental and computational research on lipase lids.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| | - Rabia Durrani
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Weiqian Huan
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Zexin Zhao
- School of Bioscience and Bioengineering, South China University of Technology , Guangzhou , China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology , Guangzhou , China
| |
Collapse
|
20
|
Skjold-Jørgensen J, Vind J, Svendsen A, Bjerrum MJ. Understanding the activation mechanism ofThermomyces lanuginosuslipase using rational design and tryptophan-induced fluorescence quenching. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
| | | | | | - Morten J. Bjerrum
- Department of Chemistry; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
21
|
Das S, Karmakar T, Balasubramanian S. Molecular Mechanism behind Solvent Concentration-Dependent Optimal Activity of Thermomyces lanuginosus Lipase in a Biocompatible Ionic Liquid: Interfacial Activation through Arginine Switch. J Phys Chem B 2016; 120:11720-11732. [DOI: 10.1021/acs.jpcb.6b08534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sudip Das
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Tarak Karmakar
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of
Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
22
|
Lid dynamics of porcine pancreatic lipase in non-aqueous solvents. Biochim Biophys Acta Gen Subj 2016; 1860:2326-34. [DOI: 10.1016/j.bbagen.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/17/2016] [Accepted: 05/03/2016] [Indexed: 01/06/2023]
|
23
|
Zorn K, Oroz-Guinea I, Brundiek H, Bornscheuer UT. Engineering and application of enzymes for lipid modification, an update. Prog Lipid Res 2016; 63:153-64. [DOI: 10.1016/j.plipres.2016.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/30/2016] [Accepted: 06/10/2016] [Indexed: 12/21/2022]
|
24
|
Skjold-Jørgensen J, Vind J, Svendsen A, Bjerrum MJ. Lipases That Activate at High Solvent Polarities. Biochemistry 2015; 55:146-56. [PMID: 26645098 DOI: 10.1021/acs.biochem.5b01114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thermomyces lanuginosus lipase (TlL) and related lipases become activated in low-polarity environments that exist at the water-lipid interface where a structural change of the "lid" region occurs. In this work, we have investigated the activation of TlL (Lipase_W89) and certain lid mutants, containing either a single positive charge mutation, E87K (Lipase_K87_W89), within the lid region or a lid residue composition of both lipase and esterase character (Hybrid_W89) as a function of solvent polarity. Activation differences between the variants and TlL were studied by a combination of biophysical and theoretical methods. To investigate the structural changes taking place in the lid region upon lipase activation, we used a fluorescence-based method measuring the efficiency of Trp89 in the lid to quench the fluorescence of a bimane molecule attached in front (C255) and behind (C61) the lid. These structural changes were compared to the enzymatic activity of each variant at the water-substrate interface and to theoretical calculations of the energies associated with lid opening as a function of the dielectric constant (ε) of the environment. Our results show that the lid in Lipase_K87_W89 undergoes a pronounced structural transition toward an open conformation around ε = 50, whereas only small changes are detected for Lipase_W89 ascribed to the stabilizing effect of the positive charge mutation on the open lid conformation. Interestingly, Hybrid_W89, with the same charge as Lipase_W89, shows a stabilization of the open lid even more pronounced at high solvent polarities than that of Lipase_K87_W89, allowing activation at ε < 80. This is further indicated by measurement of the lipase activity for each variant showing that Hybrid_W89 is more quickly activated at the water-lipid interface of a true, natural substrate. Combined, we show that a correlation exists between structural changes and enzymatic activities detected on one hand and theoretical calculations on lid opening energies on the other. These results highlight the key role that the lid plays in determining the polarity-dependent activation of lipases.
Collapse
Affiliation(s)
- Jakob Skjold-Jørgensen
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen, Denmark.,Novozymes A/S , Brudelysvej 35, DK-2880 Bagværd, Denmark
| | - Jesper Vind
- Novozymes A/S , Brudelysvej 35, DK-2880 Bagværd, Denmark
| | - Allan Svendsen
- Novozymes A/S , Brudelysvej 35, DK-2880 Bagværd, Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen , Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Liu S, Lv P, Li D, Guo X, Zhang B, Yu M, Li D, Xiong Y, Zhang L, Tian C. K(+) preference at the NaK channel entrance revealed by fluorescence lifetime and anisotropy analysis of site-specifically incorporated (7-hydroxycoumarin-4-yl)ethylglycine. Chem Commun (Camb) 2015; 51:15971-4. [PMID: 26382573 DOI: 10.1039/c5cc06124e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fluorescent unnatural amino acid, (7-hydroxycoumarin-4-yl)ethylglycine (HC), was site-specifically incorporated at the Phe69 site, close to the entrance of the selectivity filter of the NaK channel. Decreased fluorescence lifetime and elevated time-resolved anisotropy of NaK-F69HC in buffers with high K(+)/Na(+) molar ratios indicated the K(+) preference at the entrance of the NaK channel, consistent with previous crystal structure results of the NaK channel.
Collapse
Affiliation(s)
- Sanling Liu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, and School of Life Sciences, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|