1
|
Gardner PR. Ordered Motions in the Nitric-Oxide Dioxygenase Mechanism of Flavohemoglobin and Assorted Globins with Tightly Coupled Reductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:45-96. [PMID: 36520413 DOI: 10.1007/5584_2022_751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nitric-oxide dioxygenases (NODs) activate and combine O2 with NO to form nitrate. A variety of oxygen-binding hemoglobins with associated partner reductases or electron donors function as enzymatic NODs. Kinetic and structural investigations of the archetypal two-domain microbial flavohemoglobin-NOD have illuminated an allosteric mechanism that employs selective tunnels for O2 and NO, gates for NO and nitrate, transient O2 association with ferric heme, and an O2 and NO-triggered, ferric heme spin crossover-driven, motion-controlled, and dipole-regulated electron-transfer switch. The proposed mechanism facilitates radical-radical coupling of ferric-superoxide with NO to form nitrate while preventing suicidal ferrous-NO formation. Diverse globins display the structural and functional motifs necessary for a similar allosteric NOD mechanism. In silico docking simulations reveal monomeric erythrocyte hemoglobin alpha-chain and beta-chain intrinsically matched and tightly coupled with NADH-cytochrome b5 oxidoreductase and NADPH-cytochrome P450 oxidoreductase, respectively, forming membrane-bound flavohemoglobin-like mammalian NODs. The neuroprotective neuroglobin manifests a potential NOD role in a close-fitting ternary complex with membrane-bound NADH-cytochrome b5 oxidoreductase and cytochrome b5. Cytoglobin interfaces weakly with cytochrome b5 for O2 and NO-regulated electron-transfer and coupled NOD activity. The mechanistic model also provides insight into the evolution of O2 binding cooperativity in hemoglobin and a basis for the discovery of allosteric NOD inhibitors.
Collapse
|
2
|
Olson JS. Kinetic mechanisms for O 2 binding to myoglobins and hemoglobins. Mol Aspects Med 2021; 84:101024. [PMID: 34544605 DOI: 10.1016/j.mam.2021.101024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 11/29/2022]
Abstract
Antonini and Brunori's 1971 book "Hemoglobin and Myoglobin in Their Reactions with Ligands" was a truly remarkable publication that summarized almost 100 years of research on O2 binding to these globins. Over the ensuing 50 years, ultra-fast laser photolysis techniques, high-resolution and time resolved X-ray crystallography, molecular dynamics simulations, and libraries of recombinant myoglobin (Mb) and hemoglobin (Hb) variants have provided structural interpretations of O2 binding to these proteins. The resultant mechanisms provide quantitative descriptions of the stereochemical factors that govern overall affinity, including proximal and distal steric restrictions that affect iron reactivity and favorable positive electrostatic interactions that preferentially stabilize bound O2. The pathway for O2 uptake and release by Mb and subunits of Hb has been mapped by screening libraries of site-directed mutants in laser photolysis experiments. O2 enters mammalian Mb and the α and β subunits of human HbA through a channel created by upward and outward rotation of the distal His at the E7 helical position, is non-covalently captured in the interior of the distal cavity, and then internally forms a bond with the heme Fe(II) atom. O2 dissociation is governed by disruption of hydrogen bonding interactions with His (E7), breakage of the Fe(II)-O2 bond, and then competition between rebinding and escape through the E7-gate. The structural features that govern the rates of both the individual steps and overall reactions have been determined and provide the framework for: (1) defining the physiological functions of specific globins and their evolution; (2) understanding the clinical features of hemoglobinopathies; and (3) designing safer and more efficient acellular hemoglobin-based oxygen carriers (HBOCs) for transfusion therapy, organ preservation, and other commercially relevant O2 transport and storage processes.
Collapse
Affiliation(s)
- John S Olson
- Department of Biosciences, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
3
|
Lepeshkevich SV, Sazanovich IV, Parkhats MV, Gilevich SN, Dzhagarov BM. Towards understanding non-equivalence of α and β subunits within human hemoglobin in conformational relaxation and molecular oxygen rebinding. Chem Sci 2021; 12:7033-7047. [PMID: 34123331 PMCID: PMC8153241 DOI: 10.1039/d1sc00712b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Picosecond to millisecond laser time-resolved transient absorption spectroscopy was used to study molecular oxygen (O2) rebinding and conformational relaxation following O2 photodissociation in the α and β subunits within human hemoglobin in the quaternary R-like structure. Oxy-cyanomet valency hybrids, α2(Fe2+-O2)β2(Fe3+-CN) and α2(Fe3+-CN)β2(Fe2+-O2), were used as models for oxygenated R-state hemoglobin. An extended kinetic model for geminate O2 rebinding in the ferrous hemoglobin subunits, ligand migration between the primary and secondary docking site(s), and nonexponential tertiary relaxation within the R quaternary structure, was introduced and discussed. Significant functional non-equivalence of the α and β subunits in both the geminate O2 rebinding and concomitant structural relaxation was revealed. For the β subunits, the rate constant for the geminate O2 rebinding to the unrelaxed tertiary structure and the tertiary transition rate were found to be greater than the corresponding values for the α subunits. The conformational relaxation following the O2 photodissociation in the α and β subunits was found to decrease the rate constant for the geminate O2 rebinding, this effect being more than one order of magnitude greater for the β subunits than for the α subunits. Evidence was provided for the modulation of the O2 rebinding to the individual α and β subunits within human hemoglobin in the R-state structure by the intrinsic heme reactivity through a change in proximal constraints upon the relaxation of the tertiary structure on a picosecond to microsecond time scale. Our results demonstrate that, for native R-state oxyhemoglobin, O2 rebinding properties and spectral changes following the O2 photodissociation can be adequately described as the sum of those for the α and β subunits within the valency hybrids. The isolated β chains (hemoglobin H) show similar behavior to the β subunits within the valency hybrids and can be used as a model for the β subunits within the R-state oxyhemoglobin. At the same time, the isolated α chains behave differently to the α subunits within the valency hybrids.
Collapse
Affiliation(s)
- Sergei V Lepeshkevich
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave Minsk 220072 Belarus
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory Harwell Campus OX11 0QX UK
| | - Marina V Parkhats
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave Minsk 220072 Belarus
| | - Syargey N Gilevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus 5 Academician V. F. Kuprevich Street Minsk 220141 Belarus
| | - Boris M Dzhagarov
- B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus 68 Nezavisimosti Ave Minsk 220072 Belarus
| |
Collapse
|
4
|
Abstract
Human hemoglobin is the textbook example of the stereochemistry of an allosteric protein and of the exquisite control that a protein can exert over ligand binding. However, the fundamental basis by which the protein facilitates the ligand movement remains unknown. In this study, we used cryogenic X-ray crystallography and a high-repetition pulsed laser irradiation technique to elucidate the atomic details of ligand migration processes in hemoglobin after photolysis of the bound CO. Our data clarify the distinct CO migration pathways in the individual subunits of hemoglobin and unravel the functional roles of the internal cavities and neighboring amino acid residues in ligand exit and entry. Our results also demonstrate the high gas permeability and porosity of hemoglobin, facilitating O2 delivery. Hemoglobin is one of the best-characterized proteins with respect to structure and function, but the internal ligand diffusion pathways remain obscure and controversial. Here we captured the CO migration processes in the tense (T), relaxed (R), and second relaxed (R2) quaternary structures of human hemoglobin by crystallography using a high-repetition pulsed laser technique at cryogenic temperatures. We found that in each quaternary structure, the photodissociated CO molecules migrate along distinct pathways in the α and β subunits by hopping between the internal cavities with correlated side chain motions of large nonpolar residues, such as α14Trp(A12), α105Leu(G12), β15Trp(A12), and β71Phe(E15). We also observe electron density evidence for the distal histidine [α58/β63His(E7)] swing-out motion regardless of the quaternary structure, although less evident in α subunits than in β subunits, suggesting that some CO molecules have escaped directly through the E7 gate. Remarkably, in T-state Fe(II)-Ni(II) hybrid hemoglobins in which either the α or β subunits contain Ni(II) heme that cannot bind CO, the photodissociated CO molecules not only dock at the cavities in the original Fe(II) subunit, but also escape from the protein matrix and enter the cavities in the adjacent Ni(II) subunit even at 95 K, demonstrating the high gas permeability and porosity of the hemoglobin molecule. Our results provide a comprehensive picture of ligand movements in hemoglobin and highlight the relevance of cavities, nonpolar residues, and distal histidines in facilitating the ligand migration.
Collapse
|
5
|
Abstract
Hemoglobin (Hgb) forms tetramers (dimerized α-β dimers), which enhance its globular stability and may also facilitate small gas molecule transport, as shown by recent all-atom Newtonian solvated simulations. Hydropathic bioinformatic thermodynamic scaling enables close comparisons of hemoglobin dimers with myoglobin and neuroglobin, and reveals many nonlocal wave-like features of strained Hgb structures at the coarse-grained amino acid level. The thermodynamic analysis employs two hydropathic scales, one describing abrupt first-order unfolding transitions, the other continuous second-order transitions. Small molecule exchange at hemes is a first-order process. Wave-like collective tetrameric features appropriate to ligand absorption and release, seen in optical experiments (short times), are identified thermodynamically at long times. Strain fields localized near hemes interfere with extended strain fields associated with dimer interfacial misfit, resulting in novel wavelength dependent dimer correlation function Fano antiresonances.
Collapse
Affiliation(s)
- J C Phillips
- Department of Physics and Astronomy , Rutgers University , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
6
|
Terrell JR, Gumpper RH, Luo M. Hemoglobin crystals immersed in liquid oxygen reveal diffusion channels. Biochem Biophys Res Commun 2018; 495:1858-1863. [DOI: 10.1016/j.bbrc.2017.12.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 11/24/2022]
|
7
|
Vitvitsky V, Yadav PK, An S, Seravalli J, Cho US, Banerjee R. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products. J Biol Chem 2017; 292:5584-5592. [PMID: 28213526 DOI: 10.1074/jbc.m117.774943] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.
Collapse
Affiliation(s)
- Victor Vitvitsky
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Pramod K Yadav
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Sojin An
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Javier Seravalli
- the Department of Biochemistry and the Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Uhn-Soo Cho
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| | - Ruma Banerjee
- From the Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109 and
| |
Collapse
|
8
|
Sowole MA, Simpson S, Skovpen YV, Palmer DRJ, Konermann L. Evidence of Allosteric Enzyme Regulation via Changes in Conformational Dynamics: A Hydrogen/Deuterium Exchange Investigation of Dihydrodipicolinate Synthase. Biochemistry 2016; 55:5413-22. [PMID: 27604304 DOI: 10.1021/acs.biochem.6b00764] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dihydrodipicolinate synthase is a tetrameric enzyme of the diaminopimelate pathway in bacteria and plants. The protein catalyzes the condensation of pyruvate (Pyr) and aspartate semialdehyde en route to the end product lysine (Lys). Dihydrodipicolinate synthase from Campylobacter jejuni (CjDHDPS) is allosterically inhibited by Lys. CjDHDPS is a promising antibiotic target, as highlighted by the recent development of a potent bis-lysine (bisLys) inhibitor. The mechanism whereby Lys and bisLys allosterically inhibit CjDHDPS remains poorly understood. In contrast to the case for other allosteric enzymes, crystallographically detectable conformational changes in CjDHDPS upon inhibitor binding are very minor. Also, it is difficult to envision how Pyr can access the active site; the available X-ray data seemingly imply that each turnover step requires diffusion-based mass transfer through a narrow access channel. This study employs hydrogen/deuterium exchange mass spectrometry for probing the structure and dynamics of CjDHDPS in a native solution environment. The deuteration kinetics reveal that the most dynamic protein regions are in the direct vicinity of the substrate access channel. This finding is consistent with the view that transient opening/closing fluctuations facilitate access of the substrate to the active site. Under saturating conditions, both Lys and bisLys cause dramatically reduced dynamics in the inhibitor binding region. In addition, rigidification extends to regions close to the substrate access channel. This finding strongly suggests that allosteric inhibitors interfere with conformational fluctuations that are required for CjDHDPS substrate turnover. In particular, our data imply that Lys and bisLys suppress opening/closing events of the access channel, thereby impeding diffusion of the substrate into the active site. Overall, this work illustrates why allosteric control does not have to be associated with crystallographically detectable large-scale transitions. Our experiments provide evidence that in CjDHDPS allostery is mediated by changes in the extent of thermally activated conformational fluctuations.
Collapse
Affiliation(s)
- Modupeola A Sowole
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Sarah Simpson
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Yulia V Skovpen
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - David R J Palmer
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| |
Collapse
|
9
|
Lepeshkevich SV, Gilevich SN, Parkhats MV, Dzhagarov BM. Molecular oxygen migration through the xenon docking sites of human hemoglobin in the R-state. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1110-1121. [DOI: 10.1016/j.bbapap.2016.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/25/2022]
|
10
|
Shadrina MS, English AM, Peslherbe GH. Benchmarking Rapid TLES Simulations of Gas Diffusion in Proteins: Mapping O2 Migration and Escape in Myoglobin as a Case Study. J Chem Theory Comput 2016; 12:2038-46. [PMID: 26938707 DOI: 10.1021/acs.jctc.5b01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Standard molecular dynamics (MD) simulations of gas diffusion consume considerable computational time and resources even for small proteins. To combat this, temperature-controlled locally enhanced sampling (TLES) examines multiple diffusion trajectories per simulation by accommodating multiple noninteracting copies of a gas molecule that diffuse independently, while the protein and water molecules experience an average interaction from all copies. Furthermore, gas migration within a protein matrix can be accelerated without altering protein dynamics by increasing the effective temperature of the TLES copies. These features of TLES enable rapid simulations of gas diffusion within a protein matrix at significantly reduced (∼98%) computational cost. However, the results of TLES and standard MD simulations have not been systematically compared, which limits the adoption of the TLES approach. We address this drawback here by benchmarking TLES against standard MD in the simulation of O2 diffusion in myoglobin (Mb) as a case study since this model system has been extensively characterized. We find that 2 ns TLES and 108 ns standard simulations map the same network of diffusion tunnels in Mb and uncover the same docking sites, barriers, and escape portals. We further discuss the influence of simulation time as well as the number of independent simulations on the O2 population density within the diffusion tunnels and on the sampling of Mb's conformational space as revealed by principal component analysis. Overall, our comprehensive benchmarking reveals that TLES is an appropriate and robust tool for the rapid mapping of gas diffusion in proteins when the kinetic data provided by standard MD are not required. Furthermore, TLES provides explicit ligand diffusion pathways, unlike most rapid methods.
Collapse
Affiliation(s)
- Maria S Shadrina
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Ann M English
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM) and Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|