1
|
Shulgina Y, Trinidad MI, Langeberg CJ, Nisonoff H, Chithrananda S, Skopintsev P, Nissley AJ, Patel J, Boger RS, Shi H, Yoon PH, Doherty EE, Pande T, Iyer AM, Doudna JA, Cate JHD. RNA language models predict mutations that improve RNA function. Nat Commun 2024; 15:10627. [PMID: 39638800 PMCID: PMC11621547 DOI: 10.1038/s41467-024-54812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. RNA structure prediction is not yet possible due to a lack of high-quality reference data associated with organismal phenotypes that could inform RNA function. We present GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB). GARNET links RNA sequences to experimental and predicted optimal growth temperatures of GTDB reference organisms. Using GARNET, we develop sequence- and structure-aware RNA generative models, with overlapping triplet tokenization providing optimal encoding for a GPT-like model. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identify mutations in ribosomal RNA that confer increased thermostability to the Escherichia coli ribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.
Collapse
Affiliation(s)
- Yekaterina Shulgina
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Conner J Langeberg
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Hunter Nisonoff
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Seyone Chithrananda
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Amos J Nissley
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jaymin Patel
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Ron S Boger
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Peter H Yoon
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Tara Pande
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Aditya M Iyer
- Department of Physics, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Shulgina Y, Trinidad MI, Langeberg CJ, Nisonoff H, Chithrananda S, Skopintsev P, Nissley AJ, Patel J, Boger RS, Shi H, Yoon PH, Doherty EE, Pande T, Iyer AM, Doudna JA, Cate JHD. RNA language models predict mutations that improve RNA function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588317. [PMID: 38617247 PMCID: PMC11014562 DOI: 10.1101/2024.04.05.588317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Structured RNA lies at the heart of many central biological processes, from gene expression to catalysis. While advances in deep learning enable the prediction of accurate protein structural models, RNA structure prediction is not possible at present due to a lack of abundant high-quality reference data1. Furthermore, available sequence data are generally not associated with organismal phenotypes that could inform RNA function2-4. We created GARNET (Gtdb Acquired RNa with Environmental Temperatures), a new database for RNA structural and functional analysis anchored to the Genome Taxonomy Database (GTDB)5. GARNET links RNA sequences derived from GTDB genomes to experimental and predicted optimal growth temperatures of GTDB reference organisms. This enables construction of deep and diverse RNA sequence alignments to be used for machine learning. Using GARNET, we define the minimal requirements for a sequence- and structure-aware RNA generative model. We also develop a GPT-like language model for RNA in which overlapping triplet tokenization provides optimal encoding. Leveraging hyperthermophilic RNAs in GARNET and these RNA generative models, we identified mutations in ribosomal RNA that confer increased thermostability to the Escherichia coli ribosome. The GTDB-derived data and deep learning models presented here provide a foundation for understanding the connections between RNA sequence, structure, and function.
Collapse
Affiliation(s)
- Yekaterina Shulgina
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Conner J Langeberg
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Hunter Nisonoff
- Center for Computational Biology, University of California, Berkeley, CA, United States
| | - Seyone Chithrananda
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Amos J Nissley
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Jaymin Patel
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Ron S Boger
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Biophysics Graduate Program, University of California, Berkeley, CA, USA
| | - Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Peter H Yoon
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Tara Pande
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Aditya M Iyer
- Department of Physics, University of California, Berkeley, CA, USA
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Gladstone Institutes, University of California, San Francisco, CA, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
3
|
Willi JA, Karim AS, Jewett MC. Cell-Free Translation Quantification via a Fluorescent Minihelix. ACS Synth Biol 2024; 13:2253-2259. [PMID: 38979618 DOI: 10.1021/acssynbio.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cell-free gene expression systems are used in numerous applications, including medicine making, diagnostics, and educational kits. Accurate quantification of nonfluorescent proteins in these systems remains a challenge. To address this challenge, we report the adaptation and use of an optimized tetra-cysteine minihelix both as a fusion protein and as a standalone reporter with the FlAsH dye. The fluorescent reporter helix is short enough to be encoded on a primer pair to tag any protein of interest via PCR. Both the tagged protein and the standalone reporter can be detected quantitatively in real time or at the end of cell-free expression reactions with standard 96/384-well plate readers, an RT-qPCR system, or gel electrophoresis without the need for staining. The fluorescent signal is stable and correlates linearly with the protein concentration, enabling product quantification. We modified the reporter to study cell-free expression dynamics and engineered ribosome activity. We anticipate that the fluorescent minihelix reporter will facilitate efforts in engineering in vitro transcription and translation systems.
Collapse
Affiliation(s)
- Jessica A Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
4
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Katoh T, Suga H. Fine-tuning the tRNA anticodon arm for multiple/consecutive incorporations of β-amino acids and analogs. Nucleic Acids Res 2024; 52:6586-6595. [PMID: 38572748 PMCID: PMC11194099 DOI: 10.1093/nar/gkae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Ribosomal incorporation of β-amino acids into nascent peptides is much less efficient than that of the canonical α-amino acids. To overcome this, we have engineered a tRNA chimera bearing T-stem of tRNAGlu and D-arm of tRNAPro1, referred to as tRNAPro1E2, which efficiently recruits EF-Tu and EF-P. Using tRNAPro1E2 indeed improved β-amino acid incorporation. However, multiple/consecutive incorporations of β-amino acids are still detrimentally poor. Here, we attempted fine-tuning of the anticodon arm of tRNAPro1E2 aiming at further enhancement of β-amino acid incorporation. By screening various mutations introduced into tRNAPro1E2, C31G39/C28G42 mutation showed an approximately 3-fold enhancement of two consecutive incorporation of β-homophenylglycine (βPhg) at CCG codons. The use of this tRNA made it possible for the first time to elongate up to ten consecutive βPhg's. Since the enhancement effect of anticodon arm mutations differs depending on the codon used for β-amino acid incorporation, we optimized anticodon arm sequences for five codons (CCG, CAU, CAG, ACU and UGG). Combination of the five optimal tRNAs for these codons made it possible to introduce five different kinds of β-amino acids and analogs simultaneously into model peptides, including a macrocyclic scaffold. This strategy would enable ribosomal synthesis of libraries of macrocyclic peptides containing multiple β-amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Thaenert A, Sevostyanova A, Chung CZ, Vargas-Rodriguez O, Melnikov SV, Söll D. Engineered mRNA-ribosome fusions for facile biosynthesis of selenoproteins. Proc Natl Acad Sci U S A 2024; 121:e2321700121. [PMID: 38442159 PMCID: PMC10945757 DOI: 10.1073/pnas.2321700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Ribosomes are often used in synthetic biology as a tool to produce desired proteins with enhanced properties or entirely new functions. However, repurposing ribosomes for producing designer proteins is challenging due to the limited number of engineering solutions available to alter the natural activity of these enzymes. In this study, we advance ribosome engineering by describing a novel strategy based on functional fusions of ribosomal RNA (rRNA) with messenger RNA (mRNA). Specifically, we create an mRNA-ribosome fusion called RiboU, where the 16S rRNA is covalently attached to selenocysteine insertion sequence (SECIS), a regulatory RNA element found in mRNAs encoding selenoproteins. When SECIS sequences are present in natural mRNAs, they instruct ribosomes to decode UGA codons as selenocysteine (Sec, U) codons instead of interpreting them as stop codons. This enables ribosomes to insert Sec into the growing polypeptide chain at the appropriate site. Our work demonstrates that the SECIS sequence maintains its functionality even when inserted into the ribosome structure. As a result, the engineered ribosomes RiboU interpret UAG codons as Sec codons, allowing easy and site-specific insertion of Sec in a protein of interest with no further modification to the natural machinery of protein synthesis. To validate this approach, we use RiboU ribosomes to produce three functional target selenoproteins in Escherichia coli by site-specifically inserting Sec into the proteins' active sites. Overall, our work demonstrates the feasibility of creating functional mRNA-rRNA fusions as a strategy for ribosome engineering, providing a novel tool for producing Sec-containing proteins in live bacterial cells.
Collapse
Affiliation(s)
- Anna Thaenert
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
| | | | - Christina Z. Chung
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
| | | | - Sergey V. Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon TyneNE2 4HH, United Kingdom
- Biosciences Institute, Newcastle University Medical School, Newcastle upon TyneNE2 4HH, United Kingdom
| | - Dieter Söll
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT06511
- Department of Chemistry, Yale University, New Haven, CT06511
| |
Collapse
|
7
|
Daskalova SM, Dedkova LM, Maini R, Talukder P, Bai X, Chowdhury SR, Zhang C, Nangreave RC, Hecht SM. Elongation Factor P Modulates the Incorporation of Structurally Diverse Noncanonical Amino Acids into Escherichia coli Dihydrofolate Reductase. J Am Chem Soc 2023; 145:23600-23608. [PMID: 37871253 PMCID: PMC10762953 DOI: 10.1021/jacs.3c07524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The introduction of noncanonical amino acids into proteins and peptides has been of great interest for many years and has facilitated the detailed study of peptide/protein structure and mechanism. In addition to numerous nonproteinogenic α-l-amino acids, bacterial ribosome modification has provided the wherewithal to enable the synthesis of peptides and proteins with a much greater range of structural diversity, as has the use of endogenous bacterial proteins in reconstituted protein synthesizing systems. In a recent report, elongation factor P (EF-P), putatively essential for enabling the incorporation of contiguous proline residues into proteins, was shown to facilitate the introduction of an N-methylated amino acid in addition to proline. This finding prompted us to investigate the properties of this protein factor with a broad variety of structurally diverse amino acid analogues using an optimized suppressor tRNAPro that we designed. While these analogues can generally be incorporated into proteins only in systems containing modified ribosomes specifically selected for their incorporation, we found that EF-P could significantly enhance their incorporation into model protein dihydrofolate reductase using wild-type ribosomes. Plausibly, the increased yields observed in the presence of structurally diverse amino acid analogues may result from the formation of a stabilized ribosomal complex in the presence of EF-P that provides more favorable conditions for peptide bond formation. This finding should enable the facile incorporation of a much broader structural variety of amino acid analogues into proteins and peptides using native ribosomes.
Collapse
Affiliation(s)
- Sasha M Daskalova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Poulami Talukder
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sandipan Roy Chowdhury
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Chao Zhang
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C Nangreave
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M Hecht
- Biodesign Center for Bioenergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
8
|
Lee K, Willi JA, Cho N, Kim I, Jewett MC, Lee J. Cell-free Biosynthesis of Peptidomimetics. BIOTECHNOL BIOPROC E 2023; 28:1-17. [PMID: 36778039 PMCID: PMC9896473 DOI: 10.1007/s12257-022-0268-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/16/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023]
Abstract
A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.
Collapse
Affiliation(s)
- Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Inseon Kim
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208 USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208 USA
| | - Joongoo Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673 Korea
| |
Collapse
|
9
|
Lamartina CW, Chartier CA, Lee S, Shah NH, Rovis T. Modular Synthesis of Unnatural Peptides via Rh(III)-Catalyzed Diastereoselective Three-Component Carboamidation Reaction. J Am Chem Soc 2023; 145:1129-1135. [PMID: 36576945 PMCID: PMC10580301 DOI: 10.1021/jacs.2c10793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Herein we report a modular peptide ligation methodology that couples dioxazolones, arylboronic acids, and acrylamides to construct amide bonds in a diastereoselective manner under mild conditions, facilitated by Rh(III) catalysis. By converting the C-terminus of one peptide into a dioxazolone and the N-terminus of a second peptide into an acrylamide, the two pieces can be bridged by an arylboronic acid to construct unnatural phenylalanine, tyrosine, and tryptophan residues at the junction point with diastereoselectivity for their corresponding d-stereocenters. The reaction exhibits excellent functional group tolerance with a large substrate scope and is compatible with a wide array of protected amino acid residues that are utilized in Fmoc solid phase peptide synthesis. The methodology is applied to the synthesis of six diastereomeric proteasome inhibitor analogs, as well as the ligation of two 10-mer oligopeptides to construct a 21-mer polypeptide with an unnatural phenylalanine residue at the center.
Collapse
Affiliation(s)
| | - Cassandra A. Chartier
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sumin Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Neel H. Shah
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Lee J, Coronado JN, Cho N, Lim J, Hosford BM, Seo S, Kim DS, Kofman C, Moore JS, Ellington AD, Anslyn EV, Jewett MC. Ribosome-mediated biosynthesis of pyridazinone oligomers in vitro. Nat Commun 2022; 13:6322. [PMID: 36280685 PMCID: PMC9592601 DOI: 10.1038/s41467-022-33701-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/28/2022] [Indexed: 12/25/2022] Open
Abstract
The ribosome is a macromolecular machine that catalyzes the sequence-defined polymerization of L-α-amino acids into polypeptides. The catalysis of peptide bond formation between amino acid substrates is based on entropy trapping, wherein the adjacency of transfer RNA (tRNA)-coupled acyl bonds in the P-site and the α-amino groups in the A-site aligns the substrates for coupling. The plasticity of this catalytic mechanism has been observed in both remnants of the evolution of the genetic code and modern efforts to reprogram the genetic code (e.g., ribosomal incorporation of non-canonical amino acids, ribosomal ester formation). However, the limits of ribosome-mediated polymerization are underexplored. Here, rather than peptide bonds, we demonstrate ribosome-mediated polymerization of pyridazinone bonds via a cyclocondensation reaction between activated γ-keto and α-hydrazino ester monomers. In addition, we demonstrate the ribosome-catalyzed synthesis of peptide-hybrid oligomers composed of multiple sequence-defined alternating pyridazinone linkages. Our results highlight the plasticity of the ribosome's ancient bond-formation mechanism, expand the range of non-canonical polymeric backbones that can be synthesized by the ribosome, and open the door to new applications in synthetic biology.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
| | - Jaime N Coronado
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jongdoo Lim
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Brandon M Hosford
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew D Ellington
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric V Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Interdisplinary Biological Sciences Graduate Program, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Evanston, IL, 60208, USA.
- Robert H. Lurie Comprehensive Cancer Center, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Evanston, IL, 60208, USA.
- Center for Synthetic Biology, Northwestern University and Biological Engineering, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Wakabayashi R, Kawai M, Katoh T, Suga H. In Vitro Selection of Macrocyclic α/β 3-Peptides against Human EGFR. J Am Chem Soc 2022; 144:18504-18510. [PMID: 36173923 PMCID: PMC9563295 DOI: 10.1021/jacs.2c07624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/30/2022]
Abstract
Here, we report ribosomal construction of thioether-macrocyclic α/β3-peptide libraries in which β-homoglycine, β-homoalanine, β-homophenylglycine, and β-homoglutamine are introduced by genetic code reprogramming. The libraries were applied to the RaPID (Random nonstandard Peptides Integrated Discovery) selection against human EGFR to obtain PPI (protein-protein interaction) inhibitors. The resulting peptides contained up to five β3-amino acid (β3AA) residues and exhibited outstanding binding affinity, PPI inhibitory activity, and proteolytic stability, which were attributed to the β3AAs included in the peptides. This showcase work has demonstrated that the use of such β3AAs enhances the drug-like properties of peptides, providing a unique platform for the discovery of de novo macrocycles against a protein of interest.
Collapse
Affiliation(s)
- Risa Wakabayashi
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Marina Kawai
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry,
Graduate School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Three-dimensional structure-guided evolution of a ribosome with tethered subunits. Nat Chem Biol 2022; 18:990-998. [PMID: 35836020 PMCID: PMC9815830 DOI: 10.1038/s41589-022-01064-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.
Collapse
|
13
|
Katoh T, Suga H. In Vitro Genetic Code Reprogramming for the Expansion of Usable Noncanonical Amino Acids. Annu Rev Biochem 2022; 91:221-243. [PMID: 35729073 DOI: 10.1146/annurev-biochem-040320-103817] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetic code reprogramming has enabled us to ribosomally incorporate various nonproteinogenic amino acids (npAAs) into peptides in vitro. The repertoire of usable npAAs has been expanded to include not only l-α-amino acids with noncanonical sidechains but also those with noncanonical backbones. Despite successful single incorporation of npAAs, multiple and consecutive incorporations often suffer from low efficiency or are even unsuccessful. To overcome this stumbling block, engineering approaches have been used to modify ribosomes, EF-Tu, and tRNAs. Here, we provide an overview of these in vitro methods that are aimed at optimal expansion of the npAA repertoire and their applications for the development of de novo bioactive peptides containing various npAAs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan; ,
| |
Collapse
|
14
|
Hecht SM. Expansion of the Genetic Code Through the Use of Modified Bacterial Ribosomes. J Mol Biol 2022; 434:167211. [PMID: 34419431 PMCID: PMC9990327 DOI: 10.1016/j.jmb.2021.167211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022]
Abstract
Biological protein synthesis is mediated by the ribosome, and employs ~20 proteinogenic amino acids as building blocks. Through the use of misacylated tRNAs, presently accessible by any of several strategies, it is now possible to employ in vitro and in vivo protein biosynthesis to elaborate proteins containing a much larger variety of amino acid building blocks. However, the incorporation of this broader variety of amino acids is limited to those species utilized by the ribosome. As a consequence, virtually all of the substrates utilized over time have been L-α-amino acids. In recent years, a variety of structural and biochemical studies have provided important insights into those regions of the 23S ribosomal RNA that are involved in peptide bond formation. Subsequent experiments, involving the randomization of key regions of 23S rRNA required for peptide bond formation, have afforded libraries of E. coli harboring plasmids with the rrnB gene modified in the key regions. Selections based on the use of modified puromycin derivatives with altered amino acids then identified clones uniquely sensitive to individual puromycin derivatives. These clones often recognized misacylated tRNAs containing altered amino acids similar to those in the modified puromycins, and incorporated the amino acid analogues into proteins. In this fashion, it has been possible to realize the synthesis of proteins containing D-amino acids, β-amino acids, phosphorylated amino acids, as well as long chain and cyclic amino acids in which the nucleophilic amino group is not in the α-position. Of special interest have been dipeptides and dipeptidomimetics of diverse utility.
Collapse
Affiliation(s)
- Sidney M Hecht
- Center for BioEnergetics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
15
|
Walker J, Hamlish N, Tytla A, Brauer DD, Francis MB, Schepartz A. Redirecting RiPP Biosynthetic Enzymes to Proteins and Backbone-Modified Substrates. ACS CENTRAL SCIENCE 2022; 8:473-482. [PMID: 35505866 PMCID: PMC9052802 DOI: 10.1021/acscentsci.1c01577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 05/04/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are peptide-derived natural products with potent antibiotic, antiviral, and anticancer properties. RiPP enzymes known as cyclodehydratases and dehydrogenases work together to catalyze intramolecular, inter-residue condensation and dehydrogenation reactions that install oxazoline/oxazole and thiazoline/thiazole heterocycles within ribosomally produced polypeptide chains. Here, we show that the previously reported enzymes MicD-F and ArtGox accept backbone-modified monomers-including aminobenzoic acid derivatives and beta-amino acids-within leader-free polypeptides, even at positions immediately preceding or following the site of cyclization/dehydrogenation. The products are sequence-defined chemical polymers with multiple, diverse non-α-amino acid subunits. We show further that MicD-F and ArtGox can install heterocyclic backbones within protein loops and linkers without disrupting the native tertiary fold. Calculations reveal the extent to which these heterocycles restrict conformational space; they also eliminate a peptide bond-both features could improve the stability or add function to linker sequences now commonplace in emerging biotherapeutics. This work represents a general strategy to expand the chemical diversity of the proteome beyond and in synergy with what can now be accomplished by expanding the genetic code.
Collapse
Affiliation(s)
- Joshua
A. Walker
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
| | - Noah Hamlish
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
| | - Avery Tytla
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel D. Brauer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
- E-mail:
| | - Alanna Schepartz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cellular Biology, University
of California, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
- Center
for Genetically Encoded Materials, University
of California, Berkeley, California 94720, United States
- E-mail:
| |
Collapse
|
16
|
Dong H, Li J, Liu H, Lu S, Wu J, Zhang Y, Yin Y, Zhao Y, Wu C. Design and Ribosomal Incorporation of Noncanonical Disulfide-Directing Motifs for the Development of Multicyclic Peptide Libraries. J Am Chem Soc 2022; 144:5116-5125. [PMID: 35289603 DOI: 10.1021/jacs.2c00216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The engineering of naturally occurring disulfide-rich peptides (DRPs) has been significantly hampered by the difficulty of manipulating disulfide pairing. New DRPs that take advantage of fold-directing motifs and noncanonical thiol-bearing amino acids are easy-to-fold with expected disulfide connectivities, representing a new class of scaffolds for the development of peptide ligands and therapeutics. However, the limited diversity of the scaffolds and particularly the use of noncanonical amino acids [e.g., penicillamine (Pen)] that are difficult to be translated by ribosomes greatly hamper the further development and application of these DRPs. Here, we designed and synthesized noncanonical bisthiol motifs bearing sterically obstructed thiol groups analogous to the Pen thiol to direct the folding of peptides into specific bicyclic and tricyclic structures. These bisthiol motifs can be ribosomally incorporated into peptides through a commercially available PURE system integrated with genetic code reprograming, which enables, for the first time, the in vitro expression of bicyclic peptides with two noncanonical and orthogonal disulfide bonds. We further constructed a bicyclic peptide library encoded by mRNA, with which new bicyclic peptide ligands with nanomolar affinity to proteins were successfully selected. Therefore, this study provides a new, general, and robust method for discovering de novo DRPs with new structures and functions not derived from natural peptides, which would greatly benefit the field of peptide drug discovery.
Collapse
Affiliation(s)
- Huilei Dong
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jinjing Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Hongtan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Shuaimin Lu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
17
|
Katoh T, Suga H. In Vitro Selection of Foldamer-Like Macrocyclic Peptides Containing 2-Aminobenzoic Acid and 3-Aminothiophene-2-Carboxylic Acid. J Am Chem Soc 2022; 144:2069-2072. [PMID: 35099961 DOI: 10.1021/jacs.1c12133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aromatic cyclic β2,3-amino acids (cβAAs), such as 2-aminobenzoic acid and 3-aminothiophene-2-carboxylic acid, are building blocks that can induce unique folding propensities of peptides. Although their ribosomal elongation had been a formidable task due to the low nucleophilicity of their amino groups, we have recently overcome this issue by means of an engineered tRNAPro1E2 that enhances their incorporation efficiency into nascent peptide chains. Here we report ribosomal synthesis of a random macrocyclic peptide library containing aromatic and aliphatic cβAAs, and its application to de novo discovery of binders against human IFNGR1 and FXIIa as model targets. The potent binding peptides showed not only high inhibitory activity but also high protease resistance in human serum. Moreover, these cβAAs play a critical role in exhibiting their properties, establishing a discovery platform for de novo foldamer-like macrocycles containing such unique building blocks.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
18
|
Katoh T, Suga H. Consecutive Ribosomal Incorporation of α-Aminoxy/α-Hydrazino Acids with l/d-Configurations into Nascent Peptide Chains. J Am Chem Soc 2021; 143:18844-18848. [PMID: 34731572 DOI: 10.1021/jacs.1c09270] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
α-Aminoxy and α-hydrazino acids are β-amino acid analogs with β-carbons replaced by oxygen and nitrogen, respectively. Such heteroatoms dictate the folding of peptides into specific secondary structures called pseudo-γ-turns. Achiral α-aminoxyacetic acid (NOGly) and l-α-hydrazinophenylalanine (l-NNPhe) have been shown to be suitable for single incorporation during ribosomal translation, but whether ribosomes tolerate other types of α-aminoxy/α-hydrazino acids with l/d-configurations is unknown. Moreover, whether multiple or consecutive incorporations are possible remains unclear. We show, for the first time, multiple and consecutive incorporations of α-aminoxy/α-hydrazino acids with l/d-configurations into various model peptides, including macrocyclic peptide scaffolds.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
19
|
Kunjapur AM, Napolitano MG, Hysolli E, Noguera K, Appleton EM, Schubert MG, Jones MA, Iyer S, Mandell DJ, Church GM. Synthetic auxotrophy remains stable after continuous evolution and in coculture with mammalian cells. SCIENCE ADVANCES 2021; 7:eabf5851. [PMID: 34215581 PMCID: PMC11060021 DOI: 10.1126/sciadv.abf5851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Understanding the evolutionary stability and possible context dependence of biological containment techniques is critical as engineered microbes are increasingly under consideration for applications beyond biomanufacturing. While synthetic auxotrophy previously prevented Escherichia coli from exhibiting detectable escape from batch cultures, its long-term effectiveness is unknown. Here, we report automated continuous evolution of a synthetic auxotroph while supplying a decreasing concentration of essential biphenylalanine (BipA). After 100 days of evolution, triplicate populations exhibit no observable escape and exhibit normal growth rates at 10-fold lower BipA concentration than the ancestral synthetic auxotroph. Allelic reconstruction reveals the contribution of three genes to increased fitness at low BipA concentrations. Based on its evolutionary stability, we introduce the progenitor strain directly to mammalian cell culture and observe containment of bacteria without detrimental effects on HEK293T cells. Overall, our findings reveal that synthetic auxotrophy is effective on time scales and in contexts that enable diverse applications.
Collapse
Affiliation(s)
- Aditya M Kunjapur
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, CLB 215, Newark, DE 19716, USA
| | - Michael G Napolitano
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - Eriona Hysolli
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - Karen Noguera
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - Evan M Appleton
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - Max G Schubert
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - Michaela A Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, CLB 215, Newark, DE 19716, USA
| | - Siddharth Iyer
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - Daniel J Mandell
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, NRB 238, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Zhang C, Talukder P, Dedkova LM, Hecht SM. Facilitated synthesis of proteins containing modified dipeptides. Bioorg Med Chem 2021; 41:116210. [PMID: 34022527 DOI: 10.1016/j.bmc.2021.116210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022]
Abstract
The elaboration of peptides and proteins containing non-proteinogenic amino acids has been realized using several complementary strategies, including chemical synthesis, ribosome- or non-ribosome-mediated elaboration, intein-mediated polypeptide rearrangements, or some combination of these strategies. All of these have strengths and limitations, and significant efforts have been focused on minimizing the effects of limitations, to improve the overall utility of individual strategies. Our laboratory has studied ribosomally mediated peptide and protein synthesis involving a wide variety of non-proteinogenic amino acids, and in recent years we have described a novel strategy for the selection of modified bacterial ribosomes. These modified ribosomes have enabled the incorporation into peptides and proteins of numerous modified amino acids not accessible using wild-type ribosomes. This has included d-amino acids, β-amino acids, dipeptides and dipeptidomimetic species, as well as phosphorylated amino acids. Presently, we have considered novel strategies for incorporating non-proteinogenic amino acids in improved yields. This has included the incorporation of non-proteinogenic amino acids into contiguous positions, a transformation known to be challenging. We demonstrate the preparation of this type of protein modification by utilizing a suppressor tRNACUA activated with a dipeptide consisting of two identical non-proteinogenic amino acids, in the presence of modified ribosomes selected to recognize such dipeptides. Also, we demonstrate that the use of bis-aminoacylated suppressor tRNAs, shown previously to increase protein yields significantly in vitro, can be extended to the use of non-proteinogenic amino acids.
Collapse
Affiliation(s)
- Chao Zhang
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Poulami Talukder
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States
| |
Collapse
|
21
|
Abstract
Over the past decade, harnessing the cellular protein synthesis machinery to incorporate non-canonical amino acids (ncAAs) into tailor-made peptides has significantly advanced many aspects of molecular science. More recently, groundbreaking progress in our ability to engineer this machinery for improved ncAA incorporation has led to significant enhancements of this powerful tool for biology and chemistry. By revealing the molecular basis for the poor or improved incorporation of ncAAs, mechanistic studies of ncAA incorporation by the protein synthesis machinery have tremendous potential for informing and directing such engineering efforts. In this chapter, we describe a set of complementary biochemical and single-molecule fluorescence assays that we have adapted for mechanistic studies of ncAA incorporation. Collectively, these assays provide data that can guide engineering of the protein synthesis machinery to expand the range of ncAAs that can be incorporated into peptides and increase the efficiency with which they can be incorporated, thereby enabling the full potential of ncAA mutagenesis technology to be realized.
Collapse
|
22
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
23
|
Discovery of De Novo Macrocyclic Peptides by Messenger RNA Display. Trends Pharmacol Sci 2021; 42:385-397. [PMID: 33771353 DOI: 10.1016/j.tips.2021.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Macrocyclic peptides are a promising class of compounds that can often engage challenging therapeutic targets. Display technologies, such as mRNA display, allow for the efficient discovery of macrocyclic peptides. This article reviews the current approaches for generating macrocyclic peptide libraries using mRNA display and highlights some recent examples of ribosomal incorporation of nonproteinogenic amino acids into macrocyclic peptides.
Collapse
|
24
|
Abstract
The encoded biosynthesis of proteins provides the ultimate paradigm for high-fidelity synthesis of long polymers of defined sequence and composition, but it is limited to polymerizing the canonical amino acids. Recent advances have built on genetic code expansion - which commonly permits the cellular incorporation of one type of non-canonical amino acid into a protein - to enable the encoded incorporation of several distinct non-canonical amino acids. Developments include strategies to read quadruplet codons, use non-natural DNA base pairs, synthesize completely recoded genomes and create orthogonal translational components with reprogrammed specificities. These advances may enable the genetically encoded synthesis of non-canonical biopolymers and provide a platform for transforming the discovery and evolution of new materials and therapeutics.
Collapse
Affiliation(s)
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
25
|
Hammerling MJ, Yoesep DJ, Jewett MC. Single enzyme RT-PCR of full-length ribosomal RNA. Synth Biol (Oxf) 2020; 5:ysaa028. [PMID: 33409375 PMCID: PMC7772474 DOI: 10.1093/synbio/ysaa028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
The ribosome is a two-subunit, macromolecular machine composed of RNA and proteins that carries out the polymerization of α-amino acids into polypeptides. Efforts to engineer ribosomal RNA (rRNA) deepen our understanding of molecular translation and provide opportunities to expand the chemistry of life by creating ribosomes with altered properties. Toward these efforts, reverse transcription PCR (RT-PCR) of the entire 16S and 23S rRNAs, which make up the 30S small subunit and 50S large subunit, respectively, is important for isolating desired phenotypes. However, reverse transcription of rRNA is challenging due to extensive secondary structure and post-transcriptional modifications. One key challenge is that existing commercial kits for RT-PCR rely on reverse transcriptases that lack the extreme thermostability and processivity found in many commercial DNA polymerases, which can result in subpar performance on challenging templates. Here, we develop methods employing a synthetic thermostable reverse transcriptase (RTX) to enable and optimize RT-PCR of the complete Escherichia coli 16S and 23S rRNAs. We also characterize the error rate of RTX when traversing the various post-transcriptional modifications of the 23S rRNA. We anticipate that this work will facilitate efforts to study and characterize many naturally occurring long RNAs and to engineer the translation apparatus for synthetic biology.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
26
|
Lee J, Schwarz KJ, Kim DS, Moore JS, Jewett MC. Ribosome-mediated polymerization of long chain carbon and cyclic amino acids into peptides in vitro. Nat Commun 2020; 11:4304. [PMID: 32855412 PMCID: PMC7452890 DOI: 10.1038/s41467-020-18001-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/28/2020] [Indexed: 11/29/2022] Open
Abstract
Ribosome-mediated polymerization of backbone-extended monomers into polypeptides is challenging due to their poor compatibility with the translation apparatus, which evolved to use α-L-amino acids. Moreover, mechanisms to acylate (or charge) these monomers to transfer RNAs (tRNAs) to make aminoacyl-tRNA substrates is a bottleneck. Here, we rationally design non-canonical amino acid analogs with extended carbon chains (γ-, δ-, ε-, and ζ-) or cyclic structures (cyclobutane, cyclopentane, and cyclohexane) to improve tRNA charging. We then demonstrate site-specific incorporation of these non-canonical, backbone-extended monomers at the N- and C- terminus of peptides using wild-type and engineered ribosomes. This work expands the scope of ribosome-mediated polymerization, setting the stage for new medicines and materials. Backbone extended monomers are poorly compatible with the natural ribosomes, impeding their polymerization into polypeptides. Here the authors design non-canonical amino acid analogs with cyclic structures or extended carbon chains and used an engineered ribosome to improve tRNA-charging and incorporation into peptides.
Collapse
Affiliation(s)
- Joongoo Lee
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Kevin J Schwarz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Michael C Jewett
- Department of Chemical and Biological Engineering and Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
27
|
Ribosomal synthesis and de novo discovery of bioactive foldamer peptides containing cyclic β-amino acids. Nat Chem 2020; 12:1081-1088. [PMID: 32839601 DOI: 10.1038/s41557-020-0525-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/15/2020] [Indexed: 02/05/2023]
Abstract
Peptides that contain β-amino acids display stable secondary structures, such as helices and sheets, and are often referred to as foldamers. Cyclic β2,3-amino acids (cβAAs), such as 2-aminocyclohexanecarboxylic acid (2-ACHC), are strong helix/turn inducers due to their restricted conformations. Here we report the ribosomal synthesis of foldamer peptides that contain multiple, up to ten, consecutive cβAAs via genetic code reprogramming. We also report the de novo discovery of macrocyclic cβAA-containing peptides capable of binding to a protein target. As a demonstration, potent binders with low-to-subnanomolar KD values were identified for human factor XIIa (hFXIIa) and interferon-gamma receptor 1, from a library of their 1012 members. One of the anti-hFXIIa macrocyclic peptides that exhibited a high inhibitory activity and serum stability was co-crystallized with hFXIIa. The X-ray structure revealed that it adopts an antiparallel β-sheet structure induced by a (1S,2S)-2-ACHC residue via the formation of two γ-turns. This work demonstrates the potential of this platform to explore the previously inaccessible sequence space of cβAA-containing peptides.
Collapse
|
28
|
Müller D, Trucks S, Schwalbe H, Hengesbach M. Genetic Code Expansion Facilitates Position-Selective Modification of Nucleic Acids and Proteins. Chempluschem 2020; 85:1233-1243. [PMID: 32515171 DOI: 10.1002/cplu.202000150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Transcription and translation obey to the genetic code of four nucleobases and 21 amino acids evolved over billions of years. Both these processes have been engineered to facilitate the use of non-natural building blocks in both nucleic acids and proteins, enabling researchers with a decent toolbox for structural and functional analyses. Here, we review the most common approaches for how labeling of both nucleic acids as well as proteins in a site-selective fashion with either modifiable building blocks or spectroscopic probes can be facilitated by genetic code expansion. We emphasize methodological approaches and how these can be adapted for specific modifications, both during as well as after biomolecule synthesis. These modifications can facilitate, for example, a number of different spectroscopic analysis techniques and can under specific circumstances even be used in combination.
Collapse
Affiliation(s)
- Diana Müller
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Sven Trucks
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. Root of the Tree: The Significance, Evolution, and Origins of the Ribosome. Chem Rev 2020; 120:4848-4878. [PMID: 32374986 DOI: 10.1021/acs.chemrev.9b00742] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ribosome is an ancient molecular fossil that provides a telescope to the origins of life. Made from RNA and protein, the ribosome translates mRNA to coded protein in all living systems. Universality, economy, centrality and antiquity are ingrained in translation. The translation machinery dominates the set of genes that are shared as orthologues across the tree of life. The lineage of the translation system defines the universal tree of life. The function of a ribosome is to build ribosomes; to accomplish this task, ribosomes make ribosomal proteins, polymerases, enzymes, and signaling proteins. Every coded protein ever produced by life on Earth has passed through the exit tunnel, which is the birth canal of biology. During the root phase of the tree of life, before the last common ancestor of life (LUCA), exit tunnel evolution is dominant and unremitting. Protein folding coevolved with evolution of the exit tunnel. The ribosome shows that protein folding initiated with intrinsic disorder, supported through a short, primitive exit tunnel. Folding progressed to thermodynamically stable β-structures and then to kinetically trapped α-structures. The latter were enabled by a long, mature exit tunnel that partially offset the general thermodynamic tendency of all polypeptides to form β-sheets. RNA chaperoned the evolution of protein folding from the very beginning. The universal common core of the ribosome, with a mass of nearly 2 million Daltons, was finalized by LUCA. The ribosome entered stasis after LUCA and remained in that state for billions of years. Bacterial ribosomes never left stasis. Archaeal ribosomes have remained near stasis, except for the superphylum Asgard, which has accreted rRNA post LUCA. Eukaryotic ribosomes in some lineages appear to be logarithmically accreting rRNA over the last billion years. Ribosomal expansion in Asgard and Eukarya has been incremental and iterative, without substantial remodeling of pre-existing basal structures. The ribosome preserves information on its history.
Collapse
Affiliation(s)
- Jessica C Bowman
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anton S Petrov
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Moran Frenkel-Pinter
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petar I Penev
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Loren Dean Williams
- Center for the Origins of Life, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
d’Aquino AE, Azim T, Aleksashin NA, Hockenberry AJ, Krüger A, Jewett MC. Mutational characterization and mapping of the 70S ribosome active site. Nucleic Acids Res 2020; 48:2777-2789. [PMID: 32009164 PMCID: PMC7049736 DOI: 10.1093/nar/gkaa001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
The synthetic capability of the Escherichia coli ribosome has attracted efforts to repurpose it for novel functions, such as the synthesis of polymers containing non-natural building blocks. However, efforts to repurpose ribosomes are limited by the lack of complete peptidyl transferase center (PTC) active site mutational analyses to inform design. To address this limitation, we leverage an in vitro ribosome synthesis platform to build and test every possible single nucleotide mutation within the PTC-ring, A-loop and P-loop, 180 total point mutations. These mutant ribosomes were characterized by assessing bulk protein synthesis kinetics, readthrough, assembly, and structure mapping. Despite the highly-conserved nature of the PTC, we found that >85% of the PTC nucleotides possess mutational flexibility. Our work represents a comprehensive single-point mutant characterization and mapping of the 70S ribosome's active site. We anticipate that it will facilitate structure-function relationships within the ribosome and make possible new synthetic biology applications.
Collapse
Affiliation(s)
- Anne E d’Aquino
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Tasfia Azim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Adam J Hockenberry
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Michael C Jewett
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Hammerling MJ, Fritz BR, Yoesep DJ, Kim DS, Carlson ED, Jewett MC. In vitro ribosome synthesis and evolution through ribosome display. Nat Commun 2020; 11:1108. [PMID: 32111839 PMCID: PMC7048773 DOI: 10.1038/s41467-020-14705-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/28/2020] [Indexed: 02/04/2023] Open
Abstract
Directed evolution of the ribosome for expanded substrate incorporation and novel functions is challenging because the requirement of cell viability limits the mutations that can be made. Here we address this challenge by combining cell-free synthesis and assembly of translationally competent ribosomes with ribosome display to develop a fully in vitro methodology for ribosome synthesis and evolution (called RISE). We validate the RISE method by selecting active genotypes from a ~1.7 × 107 member library of ribosomal RNA (rRNA) variants, as well as identifying mutant ribosomes resistant to the antibiotic clindamycin from a library of ~4 × 103 rRNA variants. We further demonstrate the prevalence of positive epistasis in resistant genotypes, highlighting the importance of such interactions in selecting for new function. We anticipate that RISE will facilitate understanding of molecular translation and enable selection of ribosomes with altered properties. Directed evolution of the ribosome is challenging because the requirement of cell viability limits the mutations that can be made. Here the authors develop a platform for in vitro ribosome synthesis and evolution (RISE) to overcome these constraints.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Brian R Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Danielle J Yoesep
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Do Soon Kim
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA
| | - Erik D Carlson
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA.,Department of Chemical Engineering, Stanford University, Stanford, California, 94305, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA. .,Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA. .,Simpson Querrey Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208, USA.
| |
Collapse
|
32
|
Maini R, Kimura H, Takatsuji R, Katoh T, Goto Y, Suga H. Ribosomal Formation of Thioamide Bonds in Polypeptide Synthesis. J Am Chem Soc 2019; 141:20004-20008. [DOI: 10.1021/jacs.9b11097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Ward FR, Watson ZL, Ad O, Schepartz A, Cate JHD. Defects in the Assembly of Ribosomes Selected for β-Amino Acid Incorporation. Biochemistry 2019; 58:4494-4504. [PMID: 31607123 PMCID: PMC8435211 DOI: 10.1021/acs.biochem.9b00746] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ribosome engineering has emerged as a promising field in synthetic biology, particularly concerning the production of new sequence-defined polymers. Mutant ribosomes have been developed that improve the incorporation of several nonstandard monomers including d-amino acids, dipeptides, and β-amino acids into polypeptide chains. However, there remains little mechanistic understanding of how these ribosomes catalyze incorporation of these new substrates. Here, we probed the properties of a mutant ribosome-P7A7-evolved for better in vivo β-amino acid incorporation through in vitro biochemistry and cryo-electron microscopy. Although P7A7 is a functional ribosome in vivo, it is inactive in vitro, and assembles poorly into 70S ribosome complexes. Structural characterization revealed large regions of disorder in the peptidyltransferase center and nearby features, suggesting a defect in assembly. Comparison of RNA helix and ribosomal protein occupancy with other assembly intermediates revealed that P7A7 is stalled at a late stage in ribosome assembly, explaining its weak activity. These results highlight the importance of ensuring efficient ribosome assembly during ribosome engineering toward new catalytic abilities.
Collapse
Affiliation(s)
- Fred R. Ward
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA
| | - Zoe L. Watson
- Department of Chemistry, University of California-Berkeley, Berkeley, CA
| | - Omer Ad
- Department of Chemistry, Yale University, New Haven, CT
| | - Alanna Schepartz
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA
- Department of Chemistry, Yale University, New Haven, CT
| | - Jamie H. D. Cate
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
34
|
Hirose H, Tsiamantas C, Katoh T, Suga H. In vitro expression of genetically encoded non-standard peptides consisting of exotic amino acid building blocks. Curr Opin Biotechnol 2019; 58:28-36. [DOI: 10.1016/j.copbio.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
|
35
|
Ad O, Hoffman KS, Cairns AG, Featherston AL, Miller SJ, Söll D, Schepartz A. Translation of Diverse Aramid- and 1,3-Dicarbonyl-peptides by Wild Type Ribosomes in Vitro. ACS CENTRAL SCIENCE 2019; 5:1289-1294. [PMID: 31403077 PMCID: PMC6661870 DOI: 10.1021/acscentsci.9b00460] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 05/21/2023]
Abstract
Here, we report that wild type Escherichia coli ribosomes accept and elongate precharged initiator tRNAs acylated with multiple benzoic acids, including aramid precursors, as well as malonyl (1,3-dicarbonyl) substrates to generate a diverse set of aramid-peptide and polyketide-peptide hybrid molecules. This work expands the scope of ribozyme- and ribosome-catalyzed chemical transformations, provides a starting point for in vivo translation engineering efforts, and offers an alternative strategy for the biosynthesis of polyketide-peptide natural products.
Collapse
Affiliation(s)
- Omer Ad
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kyle S. Hoffman
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Andrew G. Cairns
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Aaron L. Featherston
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Scott J. Miller
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Dieter Söll
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| | - Alanna Schepartz
- Department
of Chemistry and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- E-mail:
| |
Collapse
|
36
|
Dedkova LM, Hecht SM. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. J Am Chem Soc 2019; 141:6430-6447. [PMID: 30901982 DOI: 10.1021/jacs.9b02109] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ribosome produces all of the proteins and many of the peptides present in cells. As a macromolecular complex composed of both RNAs and proteins, it employs a constituent RNA to catalyze the formation of peptide bonds rapidly and with high fidelity. Thus, the ribosome can be argued to represent the key link between the RNA World, in which RNAs were the primary catalysts, and present biological systems in which protein catalysts predominate. In spite of the well-known phylogenetic conservation of rRNAs through evolutionary history, rRNAs can be altered readily when placed under suitable pressure, e.g. in the presence of antibiotics which bind to functionally critical regions of rRNAs. While the structures of rRNAs have been altered intentionally for decades to enable the study of their role(s) in the mechanism of peptide bond formation, it is remarkable that the purposeful alteration of rRNA structure to enable the elaboration of proteins and peptides containing noncanonical amino acids has occurred only recently. In this Perspective, we summarize the history of rRNA modifications, and demonstrate how the intentional modification of 23S rRNA in regions critical for peptide bond formation now enables the direct ribosomal incorporation of d-amino acids, β-amino acids, dipeptides and dipeptidomimetic analogues of the normal proteinogenic l-α-amino acids. While proteins containing metabolically important functional groups such as carbohydrates and phosphate groups are normally elaborated by the post-translational modification of nascent polypeptides, the use of modified ribosomes to produce such polymers directly is also discussed. Finally, we describe the elaboration of such modified proteins both in vitro and in bacterial cells, and suggest how such novel biomaterials may be exploited in future studies.
Collapse
Affiliation(s)
- Larisa M Dedkova
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
37
|
Chen S, Ji X, Gao M, Dedkova LM, Hecht SM. In Cellulo Synthesis of Proteins Containing a Fluorescent Oxazole Amino Acid. J Am Chem Soc 2019; 141:5597-5601. [PMID: 30889951 DOI: 10.1021/jacs.8b12767] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic code expansion has enabled many noncanonical amino acids to be incorporated into proteins in vitro and in cellulo. These have largely involved α-l-amino acids, reflecting the substrate specificity of natural aminoacyl-tRNA synthetases and ribosomes. Recently, modified E. coli ribosomes, selected using a dipeptidylpuromycin analogue, were employed to incorporate dipeptides and dipeptidomimetics. Presently, we report the in cellulo incorporation of a strongly fluorescent oxazole amino acid (lacking an asymmetric center or α-amino group) by using modified ribosomes and pyrrolysyl-tRNA synthetase (PylRS). Initially, a plasmid encoding the RRM1 domain of putative transcription factor hnRNP LL was cotransformed with plasmid pTECH-Pyl-OP in E. coli cells, having modified ribosomes able to incorporate dipeptides. Cell incubation in a medium containing oxazole 2 resulted in the elaboration of RRM1 containing the oxazole. Green fluorescent protein, previously expressed in vitro with several different oxazole amino acids at position 66, was also expressed in cellulo containing oxazole 2; the incorporation was verified by mass spectrometry. Finally, oxazole 2 was incorporated into position 13 of MreB, a bacterial homologue of eukaryotic cytoskeletal protein actin F. Modified MreB expressed in vitro and in cellulo comigrated with wild type. E. coli cells expressing the modified MreB were strongly fluorescent and retained the E. coli cell rod-like phenotype. For each protein studied, the incorporation of oxazole 2 strongly increased oxazole fluorescence, suggesting its potential utility as a protein tag. These findings also suggest the feasibility of dramatically increasing the repertoire of amino acids that can be genetically encoded for protein incorporation in cellulo.
Collapse
Affiliation(s)
- Shengxi Chen
- Biodesign Center for BioEnergetics, and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Xun Ji
- Biodesign Center for BioEnergetics, and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Mingxuan Gao
- Biodesign Center for BioEnergetics, and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Larisa M Dedkova
- Biodesign Center for BioEnergetics, and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
38
|
Melnikov SV, Khabibullina NF, Mairhofer E, Vargas-Rodriguez O, Reynolds NM, Micura R, Söll D, Polikanov YS. Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Res 2019; 47:2089-2100. [PMID: 30520988 PMCID: PMC6393236 DOI: 10.1093/nar/gky1211] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 12/24/2022] Open
Abstract
During protein synthesis, ribosomes discriminate chirality of amino acids and prevent incorporation of D-amino acids into nascent proteins by slowing down the rate of peptide bond formation. Despite this phenomenon being known for nearly forty years, no structures have ever been reported that would explain the poor reactivity of D-amino acids. Here we report a 3.7Å-resolution crystal structure of a bacterial ribosome in complex with a D-aminoacyl-tRNA analog bound to the A site. Although at this resolution we could not observe individual chemical groups, we could unambiguously define the positions of the D-amino acid side chain and the amino group based on chemical restraints. The structure reveals that similarly to L-amino acids, the D-amino acid binds the ribosome by inserting its side chain into the ribosomal A-site cleft. This binding mode does not allow optimal nucleophilic attack of the peptidyl-tRNA by the reactive α-amino group of a D-amino acid. Also, our structure suggests that the D-amino acid cannot participate in hydrogen-bonding with the P-site tRNA that is required for the efficient proton transfer during peptide bond formation. Overall, our work provides the first mechanistic insight into the ancient mechanism that helps living cells ensure the stereochemistry of protein synthesis.
Collapse
Affiliation(s)
- Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ronald Micura
- Institute of Organic Chemistry at Leopold Franzens University, A-6020 Innsbruck, Austria
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
39
|
Schmied WH, Tnimov Z, Uttamapinant C, Rae CD, Fried SD, Chin JW. Controlling orthogonal ribosome subunit interactions enables evolution of new function. Nature 2018; 564:444-448. [PMID: 30518861 PMCID: PMC6525102 DOI: 10.1038/s41586-018-0773-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/15/2018] [Indexed: 11/09/2022]
Abstract
Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.
Collapse
MESH Headings
- Base Sequence
- Cross-Linking Reagents/chemistry
- Cryoelectron Microscopy
- Directed Molecular Evolution
- Escherichia coli/classification
- Escherichia coli/cytology
- Escherichia coli/genetics
- Escherichia coli/growth & development
- Models, Molecular
- Peptides/genetics
- Peptides/metabolism
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/ultrastructure
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/ultrastructure
- Ribosome Subunits/chemistry
- Ribosome Subunits/metabolism
- Ribosome Subunits/ultrastructure
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Ribosomes/ultrastructure
Collapse
Affiliation(s)
| | - Zakir Tnimov
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Chayasith Uttamapinant
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Christopher D Rae
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Stephen D Fried
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
40
|
Abstract
Due to their unique characteristics, which are not shared by canonical α-peptides, peptides that contain stretches of consecutive β-amino acids are attractive scaffolds for novel peptide drugs and nanomaterials. Although ribosomal incorporation of single or nonconsecutive β-amino acids into peptides has previously been reported, the incorporation of consecutive β-amino acids has not yet been accomplished. This is primarily due to their incompatibility with the ribosomal translation system. Here, we took advantage of engineered β-aminoacyl-tRNAs bearing optimized T-stem and D-arm motifs for enhancing binding affinity to EF-Tu and EF-P, respectively. Combined with a reconstituted E. coli translation system and optimized translation factor concentrations, up to seven consecutive β-amino acids could be incorporated into a model peptide. Furthermore, the synthesis of macrocyclic β-peptides closed by a thioether bond between two d-α-amino acids is also demonstrated. This represents the first example of the ribosomal synthesis of peptides containing stretches of consecutive β-amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan.,JST, PRESTO, 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
41
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
42
|
Morinaka BI, Lakis E, Verest M, Helf MJ, Scalvenzi T, Vagstad AL, Sims J, Sunagawa S, Gugger M, Piel J. Natural noncanonical protein splicing yields products with diverse β-amino acid residues. Science 2018; 359:779-782. [DOI: 10.1126/science.aao0157] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
|
43
|
Mortenson DE, Kreitler DF, Thomas NC, Guzei IA, Gellman SH, Forest KT. Evaluation of β-Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure. Chembiochem 2018; 19:604-612. [PMID: 29272560 DOI: 10.1002/cbic.201700580] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Indexed: 01/16/2023]
Abstract
β-Amino acids have a backbone that is expanded by one carbon atom relative to α-amino acids, and β residues have been investigated as subunits in protein-like molecules that adopt discrete and predictable conformations. Two classes of β residue have been widely explored in the context of generating α-helix-like conformations: β3 -amino acids, which are homologous to α-amino acids and bear a side chain on the backbone carbon adjacent to nitrogen, and residues constrained by a five-membered ring, such the one derived from trans-2-aminocyclopentanecarboxylic acid (ACPC). Substitution of α residues with their β3 homologues within an α-helix-forming sequence generally causes a decrease in conformational stability. Use of a ring-constrained β residue, however, can offset the destabilizing effect of α→β substitution. Here we extend the study of α→β substitutions, involving both β3 and ACPC residues, to short loops within a small tertiary motif. We start from previously reported variants of the Pin1 WW domain that contain a two-, three-, or four-residue β-hairpin loop, and we evaluate α→β replacements at each loop position for each variant. By referral to the ϕ,ψ angles of the native structure, one can choose a stereochemically appropriate ACPC residue. Use of such logically chosen ACPC residues enhances conformational stability in several cases. Crystal structures of three β-containing Pin1 WW domain variants show that a native-like tertiary structure is maintained in each case.
Collapse
Affiliation(s)
- David E Mortenson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Dale F Kreitler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Nicole C Thomas
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Samuel H Gellman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, USA
| | - Katrina T Forest
- Departments of Chemistry and Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
44
|
Abstract
The central dogma processes of DNA replication, transcription, and translation are responsible for the maintenance and expression of every gene in an organism. An orthogonal central dogma may insulate genetic programs from host regulation and allow expansion in the roles of these processes within the cell.
Collapse
Affiliation(s)
- Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, California, USA
- Department of Chemistry, University of California, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| | - Jason W. Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Chemistry, Cambridge University, Cambridge, UK
| | - Chris A. Voigt
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
45
|
Müller MM. Post-Translational Modifications of Protein Backbones: Unique Functions, Mechanisms, and Challenges. Biochemistry 2017; 57:177-185. [PMID: 29064683 PMCID: PMC5770884 DOI: 10.1021/acs.biochem.7b00861] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Post-translational
modifications (PTMs) dramatically enhance the
capabilities of proteins. They introduce new functionalities and dynamically
control protein activity by modulating intra- and intermolecular interactions.
Traditionally, PTMs have been considered as reversible attachments
to nucleophilic functional groups on amino acid side chains, whereas
the polypeptide backbone is often thought to be inert. This paradigm
is shifting as chemically and functionally diverse alterations of
the protein backbone are discovered. Importantly, backbone PTMs can
control protein structure and function just as side chain modifications
do and operate through unique mechanisms to achieve these features.
In this Perspective, I outline the various types of protein backbone
modifications discovered so far and highlight their contributions
to biology as well as the challenges in studying this versatile yet
poorly characterized class of PTMs.
Collapse
Affiliation(s)
- Manuel M Müller
- Department of Chemistry, King's College London , 7 Trinity Street, London SE1 1DB, United Kingdom
| |
Collapse
|
46
|
Chen S, Maini R, Bai X, Nangreave RC, Dedkova LM, Hecht SM. Incorporation of Phosphorylated Tyrosine into Proteins: In Vitro Translation and Study of Phosphorylated IκB-α and Its Interaction with NF-κB. J Am Chem Soc 2017; 139:14098-14108. [PMID: 28898075 PMCID: PMC5901656 DOI: 10.1021/jacs.7b05168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphorylated proteins play important roles in the regulation of many different cell networks. However, unlike the preparation of proteins containing unmodified proteinogenic amino acids, which can be altered readily by site-directed mutagenesis and expressed in vitro and in vivo, the preparation of proteins phosphorylated at predetermined sites cannot be done easily and in acceptable yields. To enable the synthesis of phosphorylated proteins for in vitro studies, we have explored the use of phosphorylated amino acids in which the phosphate moiety bears a chemical protecting group, thus eliminating the negative charges that have been shown to have a negative effect on protein translation. Bis-o-nitrobenzyl protection of tyrosine phosphate enabled its incorporation into DHFR and IκB-α using wild-type ribosomes, and the elaborated proteins could subsequently be deprotected by photolysis. Also investigated in parallel was the re-engineering of the 23S rRNA of Escherichia coli, guided by the use of a phosphorylated puromycin, to identify modified ribosomes capable of incorporating unprotected phosphotyrosine into proteins from a phosphotyrosyl-tRNACUA by UAG codon suppression during in vitro translation. Selection of a library of modified ribosomal clones with phosphorylated puromycin identified six modified ribosome variants having mutations in nucleotides 2600-2605 of 23S rRNA; these had enhanced sensitivity to the phosphorylated puromycin. The six clones demonstrated some sequence homology in the region 2600-2605 and incorporated unprotected phosphotyrosine into IκB-α using a modified gene having a TAG codon in the position corresponding to amino acid 42 of the protein. The purified phosphorylated protein bound to a phosphotyrosine specific antibody and permitted NF-κB binding to a DNA duplex sequence corresponding to its binding site in the IL-2 gene promoter. Unexpectedly, phosphorylated IκB-α also mediated the exchange of exogenous DNA into an NF-κB-cellular DNA complex isolated from the nucleus of activated Jurkat cells.
Collapse
Affiliation(s)
- Shengxi Chen
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Rumit Maini
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguang Bai
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ryan C. Nangreave
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Larisa M. Dedkova
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Sidney M. Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
47
|
Abstract
Nature uses a limited, conservative set of amino acids to synthesize proteins. The ability to genetically encode an expanded set of building blocks with new chemical and physical properties is transforming the study, manipulation and evolution of proteins, and is enabling diverse applications, including approaches to probe, image and control protein function, and to precisely engineer therapeutics. Underpinning this transformation are strategies to engineer and rewire translation. Emerging strategies aim to reprogram the genetic code so that noncanonical biopolymers can be synthesized and evolved, and to test the limits of our ability to engineer the translational machinery and systematically recode genomes.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
- Department of Chemistry, Cambridge University, Cambridge CB2 1EW, UK
| |
Collapse
|
48
|
Lannes L, Young P, Richter C, Morgner N, Schwalbe H. Interaction of the N-Terminal Tandem Domains of hnRNP LL with the BCL2 Promoter i-Motif DNA Sequence. Chembiochem 2017; 18:2033-2044. [PMID: 28805284 DOI: 10.1002/cbic.201700390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Indexed: 01/26/2023]
Abstract
The human genome contains GC-rich sequences able to form tetraplex secondary structures known as the G-quadruplex and i-motif. Such sequences are notably present in the promoter region of oncogenes and are proposed to function as regulatory elements of gene expression. The P1 promoter of BCL2 contains a 39-mer C-rich sequence (Py39wt) that can fold into a hairpin or an i-motif in a pH-dependent manner in vitro. The protein hnRNP LL was identified to recognise the i-motif over the hairpin conformation and act as an activating transcription factor. Thus, the Py39wt sequence would act as an ON/OFF switch, according to the secondary structure adopted. Herein, a structural study of the interaction between hnRNP LL and Py39wt is reported. Both N-terminal RNA recognition motifs (RRM12) cooperatively recognise one Py39wt DNA sequence and engage their β-sheet to form a large binding platform. In contrast, the C-terminal RRMs show no binding capacity. It is observed that RRM12 binds to Py39wt regardless of the DNA conformation. We propose that RRM12 recognises a single-stranded CTCCC element present in loop 1 of the i-motif and in the apical loop of the hairpin conformation.
Collapse
Affiliation(s)
- Laurie Lannes
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Phoebe Young
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Nina Morgner
- Institute for Physical and Theoretical Chemistry, Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt/Main, Germany
| |
Collapse
|
49
|
Repurposing ribosomes for synthetic biology. Curr Opin Chem Biol 2017; 40:87-94. [PMID: 28869851 DOI: 10.1016/j.cbpa.2017.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/21/2022]
Abstract
The translation system is the cell's factory for protein biosynthesis, stitching together hundreds to thousands of amino acids into proteins, which are required for the structure, function, and regulation of living systems. The extraordinary synthetic capability of this system, which includes the ribosome and its associated factors required for polymerization, has driven extensive efforts to harness it for societal use in areas as diverse as energy, materials, and medicine. A powerful example is recombinant protein production, which has impacted the lives of patients through the synthesis of biopharmaceuticals such as insulin. In nature, however, only limited sets of monomers are utilized, thereby resulting in limited sets of biopolymers (i.e., proteins). Expanding nature's repertoire of ribosomal monomers could yield new classes of enzymes, therapeutics, materials, and chemicals with diverse, genetically encoded chemistry. Here, we discuss recent progress towards engineering ribosomes both in vivo and in vitro. These fundamental and technical breakthroughs open doors for advanced applications in biotechnology and synthetic biology.
Collapse
|
50
|
De Bo G, Gall MAY, Kitching MO, Kuschel S, Leigh DA, Tetlow DJ, Ward JW. Sequence-Specific β-Peptide Synthesis by a Rotaxane-Based Molecular Machine. J Am Chem Soc 2017; 139:10875-10879. [DOI: 10.1021/jacs.7b05850] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guillaume De Bo
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Malcolm A. Y. Gall
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Matthew O. Kitching
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sonja Kuschel
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - David A. Leigh
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Daniel J. Tetlow
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - John W. Ward
- School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|