1
|
Ivanovaitė ŠRN, Paksaitė J, Kopu Stas A, Karzaitė G, Rutkauskas D, Silanskas A, Sasnauskas G, Zaremba M, Jones SK, Tutkus M. smFRET Detection of Cis and Trans DNA Interactions by the BfiI Restriction Endonuclease. J Phys Chem B 2023. [PMID: 37452775 PMCID: PMC10388346 DOI: 10.1021/acs.jpcb.3c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/18/2023]
Abstract
Protein-DNA interactions are fundamental to many biological processes. Proteins must find their target site on a DNA molecule to perform their function, and mechanisms for target search differ across proteins. Especially challenging phenomena to monitor and understand are transient binding events that occur across two DNA target sites, whether occurring in cis or trans. Type IIS restriction endonucleases rely on such interactions. They play a crucial role in safeguarding bacteria against foreign DNA, including viral genetic material. BfiI, a type IIS restriction endonuclease, acts upon a specific asymmetric sequence, 5-ACTGGG-3, and precisely cuts both upper and lower DNA strands at fixed locations downstream of this sequence. Here, we present two single-molecule Förster resonance energy-transfer-based assays to study such interactions in a BfiI-DNA system. The first assay focuses on DNA looping, detecting both "Phi"- and "U"-shaped DNA looping events. The second assay only allows in trans BfiI-target DNA interactions, improving the specificity and reducing the limits on observation time. With total internal reflection fluorescence microscopy, we directly observe on- and off-target binding events and characterize BfiI binding events. Our results show that BfiI binds longer to target sites and that BfiI rarely changes conformations during binding. This newly developed assay could be employed for other DNA-interacting proteins that bind two targets and for the dsDNA substrate BfiI-PAINT, a useful strategy for DNA stretch assays and other super-resolution fluorescence microscopy studies.
Collapse
Affiliation(s)
- Ša Ru Nė Ivanovaitė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Justė Paksaitė
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Aurimas Kopu Stas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Giedrė Karzaitė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
| | - Danielis Rutkauskas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
| | - Arunas Silanskas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Giedrius Sasnauskas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Stephen K Jones
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Marijonas Tutkus
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
2
|
Tutkus M, Rakickas T, Kopu Stas A, Ivanovaitė ŠN, Venckus O, Navikas V, Zaremba M, Manakova E, Valiokas RN. Fixed DNA Molecule Arrays for High-Throughput Single DNA-Protein Interaction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5921-5930. [PMID: 30955328 DOI: 10.1021/acs.langmuir.8b03424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/21/2023]
Abstract
The DNA Curtains assay is a recently developed experimental platform for protein-DNA interaction studies at the single-molecule level that is based on anchoring and alignment of DNA fragments. The DNA Curtains so far have been made by using chromium barriers and fluid lipid bilayer membranes, which makes such a specialized assay technically challenging and relatively unstable. Herein, we report on an alternative strategy for DNA arraying for analysis of individual DNA-protein interactions. It relies on stable DNA tethering onto nanopatterned protein templates via high affinity molecular recognition. We describe fabrication of streptavidin templates (line features as narrow as 200 nm) onto modified glass coverslips by combining surface chemistry, atomic force microscopy (AFM), and soft lithography techniques with affinity-driven assembly. We have employed such chips for arraying single- and double-tethered DNA strands, and we characterized the obtained molecular architecture: we evaluated the structural characteristics and specific versus nonspecific binding of fluorescence-labeled DNA using AFM and total internal reflection fluorescence microscopy. We demonstrate the feasibility of our DNA molecule arrays for short single-tethered as well as for lambda single- and double-tethered DNA. The latter type of arrays proved very suitable for localization of single DNA-protein interactions employing restriction endonucleases. The presented molecular architecture and facile method of fabrication of our nanoscale platform does not require clean room equipment, and it offers advanced functional studies of DNA machineries and the development of future nanodevices.
Collapse
Affiliation(s)
| | | | - Aurimas Kopu Stas
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | | | | | | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | - Elena Manakova
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | |
Collapse
|