1
|
Lu Y, Chen H, Shao Z, Sun L, Li C, Lu Y, You X, Yang X. Deletion of the Mycobacterium tuberculosis cyp138 gene leads to changes in membrane-related lipid composition and antibiotic susceptibility. Front Microbiol 2024; 15:1301204. [PMID: 38591032 PMCID: PMC10999552 DOI: 10.3389/fmicb.2024.1301204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/01/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Mycobacterium tuberculosis (Mtb), the main cause of tuberculosis (TB), has brought a great burden to the world's public health. With the widespread use of Mtb drug-resistant strains, the pressure on anti-TB treatment is increasing. Anti-TB drugs with novel structures and targets are urgently needed. Previous studies have revealed a series of CYPs with important roles in the survival and metabolism of Mtb. However, there is little research on the structure and function of CYP138. Methods In our study, to discover the function and targetability of CYP138, a cyp138-knockout strain was built, and the function of CYP138 was speculated by the comparison between cyp138-knockout and wild-type strains through growth curves, growth status under different carbon sources, infection curves, SEM, MIC tests, quantitative proteomics, and lipidomics. Results and discussion The knockout of cyp138 was proven to affect the Mtb's macrophage infection, antibiotics susceptibility, and the levels of fatty acid metabolism, membrane-related proteins, and lipids such as triacylglycerol. We proposed that CYP138 plays an important role in the synthesis and decomposition of lipids related to the cell membrane structure as a new potential anti-tuberculosis drug target.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhiyuan Shao
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lang Sun
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| | - Yu Lu
- Beijing Key Laboratory of Drug Resistance Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, and Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Division for Medicinal Microorganisms-related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing, China
| |
Collapse
|
2
|
Zhang J, Ouyang X, Zhang F, Li B, Chang L, Yang P, Mao W, Gou S, Zhang Y, Liu H, Yao J, Ni J. Structure-Activity Relationship Study of Antimicrobial Peptide PE2 Delivered Novel Linear Derivatives with Potential of Eradicating Biofilms and Low Incidence of Drug Resistance. J Med Chem 2023. [PMID: 37368962 DOI: 10.1021/acs.jmedchem.3c00181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The ongoing emergence of antibiotic-resistant pathogens had been dramatically stimulating and accelerating the need for new drugs. PE2 is a kind of cyclic lipopeptide with broad-spectrum antimicrobial activity. Herein, its structure-activity relationship was systematically investigated by employing 4 cyclic analogues and 23 linear analogues for the first time. The screened linear analogues 26 and 27 bearing different fatty acyls at N-termini and a Tyr residue at the 9th position had superior potency compared to the cyclic analogues and showed equivalent antimicrobial activity compared with PE2. Notably, 26 and 27 exhibited significant ability against multidrug-resistant bacteria, favorable resistance to protease, excellent performance against biofilm, low drug resistance, and high effectiveness against the mice pneumonia model. The antibacterial mechanisms of PE2 and linear derivatives 26 and 27 were also preliminarily explored in this study. As described above, 26 and 27 are promising antimicrobial candidates for the treatment of infections associated with drug-resistant bacteria.
Collapse
Affiliation(s)
- Jingying Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xu Ouyang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Fangyan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Beibei Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Linlin Chang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ping Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wenbo Mao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sanhu Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yun Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hui Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia Yao
- The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Jingman Ni
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Pharmaceutics, School of Pharmacy, and Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou University, Lanzhou 730000, P. R. China
- Chinese Academy of Medical Sciences, Peking Union Medical College, Institute of Materia Medica, No. 1 Xian Nong Tan Street, Beijing 100050, P. R. China
| |
Collapse
|
3
|
Roulet J, Galván V, Lara J, Salazar MO, Cholich V, Gramajo H, Arabolaza A. Modification of PapA5 acyltransferase substrate selectivity for optimization of short-chain alcohol-derived multimethyl-branched ester production in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:8705-8718. [PMID: 32910267 DOI: 10.1007/s00253-020-10872-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 11/30/2022]
Abstract
Plant waxes are interesting substitutes of fossil-derived compounds; however, their limited sources and narrow structural diversity prompted the development of microbial platforms to produce esters with novel chemical structures and properties. One successful strategy was the heterologous expression of the mycocerosic polyketide synthase-based biosynthetic pathway (MAS-PKS, PapA5 and FadD28 enzymes) from Mycobacterium tuberculosis in Escherichia coli. This recombinant strain has the ability to produce a broad spectrum of multimethyl-branched long-chain esters (MBE) with novel chemical structures and high oxidation stability. However, one limitation of this microbial platform was the low yields obtained for MBE derived of short-chain alcohols. In an attempt to improve the titers of the short-chain alcohol-derived MBE, we focused on the PapA5 acyltransferase-enzyme that catalyzes the ester formation reaction. Specific amino acid residues located in the two-substrate recognition channels of this enzyme were identified, rationally mutated, and the corresponding mutants characterized both in vivo and in vitro. The phenylalanine located at 331 position in PapA5 (F331) was found to be a key residue that when substituted by other bulky and aromatic or bulky and polar amino acid residues (F331W, F331Y or F331H), gave rise to PapA5 mutants with improved bioconversion efficiency; showing in average, 2.5 higher yields of short-chain alcohol-derived MBE compared with the wild-type enzyme. Furthermore, two alternative pathways for synthetizing ethanol were engineered into the MBE producer microorganism, allowing de novo production of ethanol-derived MBE at levels comparable with those obtained by the external supply of this alcohol. KEY POINTS: • Mutation in channel 2 changes PapA5 acyltransferase bioconversion efficiency. • Improved production of short-chain alcohol derived multimethyl-branched esters. • Establishing ethanologenic pathways for de novo production of ethanol derived MBE. • Characterization of a novel phenylethanol-derived MBE.
Collapse
Affiliation(s)
- Julia Roulet
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ocampo y Esmeralda, 2000, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Virginia Galván
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ocampo y Esmeralda, 2000, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Julia Lara
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ocampo y Esmeralda, 2000, Rosario, Argentina.,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Mario O Salazar
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Valeria Cholich
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
| | - Hugo Gramajo
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ocampo y Esmeralda, 2000, Rosario, Argentina. .,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Ana Arabolaza
- IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ocampo y Esmeralda, 2000, Rosario, Argentina. .,Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
4
|
Panchal V, Jatana N, Malik A, Taneja B, Pal R, Bhatt A, Besra GS, Thukral L, Chaudhary S, Rao V. A novel mutation alters the stability of PapA2 resulting in the complete abrogation of sulfolipids in clinical mycobacterial strains. FASEB Bioadv 2019; 1:306-319. [PMID: 32123834 PMCID: PMC6996325 DOI: 10.1096/fba.2018-00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023] Open
Abstract
The analysis of whole genomes has revealed specific geographical distribution of Mycobacterium tuberculosis (Mtb) strains across the globe suggestive of unique niche dependent adaptive mechanisms. We provide an important correlation of a genome-based mutation to a molecular phenotype across two predominant clinical Mtb lineages of the Indian subcontinent. We have identified a distinct lineage specific mutation-G247C, translating into an alanine-proline conversion in the papA2 gene of Indo-oceanic lineage 1 (L1) Mtb strains, and restoration of cell wall sulfolipids by simple genetic complementation of papA2 from lineage 3 (L3) or from H37Rv (lineage 4-L4) attributed the loss of this glycolipid to this specific mutation in Indo-Oceanic L1 Mtb. The investigation of structure of Mtb PapA2 revealed a distinct nonribosomal peptide synthetase (NRPS) C domain conformation with an unconventional presence of a zinc binding motif. Surprisingly, the A83P mutation did not map to either the catalytic center in the N-terminal subdomain or any of the substrate-binding region of the protein. On the contrary, the inherent ability of mutant PapA2 to form insoluble aggregates and molecular simulations with the wild-type/mutant (Wt/mut) PapA2 purports an important role for the surface associated 83rd residue in protein conformation. This study demonstrates the importance of a critical structural residue in the papA2 protein of Mtb and helps establish a link between observed genomic alteration and its molecular consequence in the successful human pathogen Mtb. Significance We demonstrate the effect of a unique SNP in PapA2 gene of Indo-oceanic Mycobacterium tuberculosis (Mtb) strains leading to the loss of sulfolipid from these strains. By X-ray crystallographic analysis and molecular dynamics (MD) simulations, we show the importance of this residue in the global PapA2 structure. The presence of a Zn atom has not been reported before for this class of proteins. Here, we provide an important link between genomic alteration and its molecular consequence in Mtb highlighting one of the many adaptive mechanisms that have contributed to its success as a human pathogen. A high degree of identity with PapA1, 3, or 4 would help in interpreting the structure of these PapA proteins and other acyl transferases of other biological systems.
Collapse
Affiliation(s)
- Vipul Panchal
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | - Nidhi Jatana
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Anchal Malik
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Bhupesh Taneja
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | | | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Gurdyal S Besra
- School of Biosciences and Institute of Microbiology and InfectionUniversity of BirminghamBirminghamUK
| | - Lipi Thukral
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| | - Sarika Chaudhary
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Vivek Rao
- Cardio Respiratory Disease BiologyCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia,Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) CampusNew DelhiIndia
| |
Collapse
|
5
|
Richard-Greenblatt M, Av-Gay Y. Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0005-2015. [PMID: 28281439 PMCID: PMC11687473 DOI: 10.1128/microbiolspec.tbtb2-0005-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
Affiliation(s)
- Melissa Richard-Greenblatt
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
6
|
Chalut C. MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria. Tuberculosis (Edinb) 2016; 100:32-45. [DOI: 10.1016/j.tube.2016.06.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|