1
|
McGarry J, Mintmier B, Metzger MC, Giri NC, Britt N, Basu P, Wilcoxen J. Insights into periplasmic nitrate reductase function under single turnover. J Biol Inorg Chem 2024; 29:811-819. [PMID: 39633165 DOI: 10.1007/s00775-024-02087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Nitrate reductases play pivotal roles in nitrogen metabolism by leveraging the molybdopterin cofactor to facilitate the reduction of nitrate to nitrite. Periplasmic nitrate reductases (NapA) utilize nitrate as a terminal electron acceptor when oxygen is limiting, helping to drive anaerobic metabolism in bacteria. Despite extensive research into NapA homologs, open questions about the mechanism remain especially at the molecular level. More broadly, little is understood of how the molybdopterin cofactor is tuned for catalysis in these enzymes enabling broad substrate scope and reactivity observed in molybdenum-containing enzymes. Here, we have prepared NapA from Campylobacter jejuni under single turnover conditions to generate a singly reduced enzyme that can be further examined by electron paramagnetic resonance (EPR) spectroscopy. Our results provide new context into the known spectra and related structures of NapA and related enzymes. These insights open new avenues for understanding nitrate reductase mechanisms, molybdenum coordination dynamics, and the role of pyranopterin ligands in catalysis.
Collapse
Affiliation(s)
- Jennifer McGarry
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicholas Britt
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin- Milwaukee, Milwaukee, WI, 53211, USA.
| |
Collapse
|
2
|
Yang J, Mintmier B, Kc K, Metzger MC, Radhakrishnan M, McGarry J, Wilcoxen J, Basu P, Kirk ML. Active Site Characterization of a Campylobacter jejuni Nitrate Reductase Variant Provides Insight into the Enzyme Mechanism. Inorg Chem 2024; 63:13191-13196. [PMID: 38984973 DOI: 10.1021/acs.inorgchem.4c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle.
Collapse
Affiliation(s)
- Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Khadanand Kc
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Mikayla C Metzger
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Manohar Radhakrishnan
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Jennifer McGarry
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 N. Cramer St., Milwaukee, Wisconsin 53211, United States
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin, 3210 N. Cramer St., Milwaukee, Wisconsin 53211, United States
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University, 402 Blackford St., Indianapolis, Indiana 46202, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
3
|
Yang Y, Lu Z, Azari M, Kartal B, Du H, Cai M, Herbold CW, Ding X, Denecke M, Li X, Li M, Gu JD. Discovery of a new genus of anaerobic ammonium oxidizing bacteria with a mechanism for oxygen tolerance. WATER RESEARCH 2022; 226:119165. [PMID: 36257158 DOI: 10.1016/j.watres.2022.119165] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/15/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
In the past 20 years, there has been a major stride in understanding the core mechanism of anaerobic ammonium-oxidizing (anammox) bacteria, but there are still several discussion points on their survival strategies. Here, we discovered a new genus of anammox bacteria in a full-scale wastewater-treating biofilm system, tentatively named "Candidatus Loosdrechtia aerotolerans". Next to genes of all core anammox metabolisms, it encoded and transcribed genes involved in the dissimilatory nitrate reduction to ammonium (DNRA), which coupled to oxidation of small organic acids, could be used to replenish ammonium and sustain their metabolism. Surprisingly, it uniquely harbored a new ferredoxin-dependent nitrate reductase, which has not yet been found in any other anammox genome and might confer a selective advantage to it in nitrate assimilation. Similar to many other microorganisms, superoxide dismutase and catalase related to oxidative stress resistance were encoded and transcribed by "Ca. Loosdrechtia aerotolerans". Interestingly, bilirubin oxidase (BOD), likely involved in oxygen resistance of anammox bacteria under fluctuating oxygen concentrations, was identified in "Ca. Loosdrechtia aerotolerans" and four Ca. Brocadia genomes, and its activity was demonstrated using purified heterologously expressed proteins. A following survey of oxygen-active proteins in anammox bacteria revealed the presence of other previously undetected oxygen defense systems. The novel cbb3-type cytochrome c oxidase and bifunctional catalase-peroxidase may confer a selective advantage to Ca. Kuenenia and Ca. Scalindua that face frequent changes in oxygen concentrations. The discovery of this new genus significantly broadens our understanding of the ecophysiology of anammox bacteria. Furthermore, the diverse oxygen tolerance strategies employed by distinct anammox bacteria advance our understanding of their niche adaptability and provide valuable insight for the operation of anammox-based wastewater treatment systems.
Collapse
Affiliation(s)
- Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhongyi Lu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Mohammad Azari
- Department of Aquatic Environmental Engineering, Institute for Water and River Basin Management, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Karlsruhe 76131, Germany
| | - Boran Kartal
- Microbial Physiology Group, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, Bremen 28359, Germany
| | - Huan Du
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Craig W Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria
| | - Xinghua Ding
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Martin Denecke
- Department of Urban Water- and Waste Management, University of Duisburg-Essen, Universitätsstraße 15, Essen 45141, Germany
| | - Xiaoyan Li
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Ji-Dong Gu
- Environmental Science and Engineering Research Group, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People's Republic of China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, Guangdong 519082, People's Republic of China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, People's Republic of China.
| |
Collapse
|
4
|
Al-Attar S, Rendon J, Sidore M, Duneau JP, Seduk F, Biaso F, Grimaldi S, Guigliarelli B, Magalon A. Gating of Substrate Access and Long-Range Proton Transfer in Escherichia coli Nitrate Reductase A: The Essential Role of a Remote Glutamate Residue. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sinan Al-Attar
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Julia Rendon
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Marlon Sidore
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Jean-Pierre Duneau
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Farida Seduk
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Frédéric Biaso
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Stéphane Grimaldi
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Bruno Guigliarelli
- Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR7281), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| | - Axel Magalon
- Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, Aix Marseille Université, CNRS, 13402 Marseille, France
| |
Collapse
|
5
|
Srivastava AP, Mishra N, Prasad RLA, Rajesh P, Knaff DB. Thermodynamics of ferredoxin binding to cyanobacterial nitrate reductase. PHOTOSYNTHESIS RESEARCH 2020; 144:73-84. [PMID: 32222887 DOI: 10.1007/s11120-020-00738-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
The role of the seven negatively charged amino acids of Synechocystis sp. PCC 6803 ferredoxin (Fd), i.e., Glu29, Glu30, Asp60, Asp65, Asp66, Glu92, and Glu93, predicted to form complex with nitrate reductase (NR), was investigated using site-directed mutagenesis and isothermal titration calorimetry (ITC). These experiments identified four Fd amino acids, i.e., Glu29, Asp60, Glu92, and Glu93, that are essential for the Fd binding and efficient electron transfer to the NR. ITC measurements showed that the most likely stoichiometry for the wild-type NR/wild-type Fd complex is 1:1, a Kd value 4.7 μM for the complex at low ionic strength residues and both the enthalpic and entropic components are associated with complex formation. ITC titrations of wild-type NR with four Fd variants, E29N, D60N, E92Q, and E93N demonstrated that the complex formation, although favorable, was less energetically favorable when compared to complex formation between the two wild-type proteins, suggesting that these negatively charged Fd residues at these positions are important for the effective and productive interaction with wild-type enzyme.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
| | - Neelam Mishra
- Department of Botany, St. Joseph's College, Bangalore, Karnataka, India
| | | | - Preethi Rajesh
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
6
|
Srivastava AP, Hardy EP, Allen JP, Vaccaro BJ, Johnson MK, Knaff DB. Identification of the Ferredoxin-Binding Site of a Ferredoxin-Dependent Cyanobacterial Nitrate Reductase. Biochemistry 2017; 56:5582-5592. [PMID: 28520412 DOI: 10.1021/acs.biochem.7b00025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An in silico model for the 1:1 ferredoxin (Fd)/nitrate reductase (NR) complex, using the known structure of Synechocystis sp. PCC 6803 Fd and the in silico model of Synechococcus sp. PCC 7942 NR, is used to map the interaction sites that define the interface between Fd and NR. To test the electrostatic interactions predicted by the model complex, five positively charged NR amino acids (Arg43, Arg46, Arg197, Lys201, and Lys614) and a negatively charged amino acid (Glu219) were altered using site-directed mutagenesis and characterized by activity measurements, metal analysis, and electron paramagnetic resonance (EPR) studies. All of the charge replacement variants retained wild-type levels of activity with reduced methyl viologen (MV), but a significant decrease in activity was observed for the R43Q, R46Q, K201Q, and K614Q variants when reduced Fd served as the electron donor. EPR analysis as well as the Fe and Mo analyses showed that loss of activity observed with these variants was not the consequence of perturbation of the Mo center or [4Fe-4S] cluster. Therefore, the loss of the Fd-linked specific activity observed with these variants can be explained only by invoking a role for Arg43, Arg46, Lys201, and Lys614 in Fd binding. The R43Q, R46Q, K201Q, and K614Q NR variants also showed a decreased binding affinity for Fd, compared to that of wild-type NR, supporting a key role of these four positively charged residues in the productive binding of Fd.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - Emily P Hardy
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States
| | - James P Allen
- School of Molecular Sciences, Arizona State University , Tempe, Arizona 85287-1604, United States
| | - Brian J Vaccaro
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - Michael K Johnson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia , Athens, Georgia 30602-2556, United States
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University , Lubbock, Texas 79409-1061, United States.,Center for Biotechnology and Genomics, Texas Tech University , Lubbock, Texas 79409-3132, United States
| |
Collapse
|
7
|
Chu S, Zhang D, Wang D, Zhi Y, Zhou P. Heterologous expression and biochemical characterization of assimilatory nitrate and nitrite reductase reveals adaption and potential of Bacillus megaterium NCT-2 in secondary salinization soil. Int J Biol Macromol 2017; 101:1019-1028. [PMID: 28389402 DOI: 10.1016/j.ijbiomac.2017.04.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 10/19/2022]
Abstract
Large accumulation of nitrate in soil has resulted in "salt stress" and soil secondary salinization. Bacillus megaterium NCT-2 which was isolated from secondary salinization soil showed high capability of nitrate reduction. The genes encoding assimilatory nitrate and nitrite reductase from NCT-2 were cloned and over-expressed in Escherichia coli. The optimum co-expression condition was obtained with E. coli BL21 (DE3) and 0.1mM IPTG for 10h when expression was carried out at 20°C and 120rpm in Luria-Bertani (LB) medium. The molecular mass of nitrate reductase was 87.3kDa and 80.5kDa for electron transfer and catalytic subunit, respectively. The large and small subunit of nitrite reductase was 88kDa and 11.7kDa, respectively. The purified recombinant enzymes showed broad activity range of temperature and pH. The maximum activities were obtained at 35°C and 30°C, pH 6.2 and 6.5, which was similar to the condition of greenhouse soils. Maximum stimulation of the enzymes occurred with addition of Fe3+, while Cu2+ caused the maximum inhibition. The optimum electron donor was MV+Na2S2O4+EDTA and MV+Na2S2O4, respectively. Kinetic parameters of Km and Vmax were determined to be 670μM and 58U/mg for nitrate reductase, and 3100μM and 5.2U/mg for nitrite reductase. Results of quantitative real-time PCR showed that the maximum expression levels of nitrate and nitrite reductase were obtained at 50mM nitrate for 8h and 12h, respectively. These results provided information on novel assimilatory nitrate and nitrite reductase and their properties presumably revealed adaption of B. megaterium NCT-2 to secondary salinization condition. This study also shed light on the role played by the nitrate assimilatory pathway in B. megaterium NCT-2.
Collapse
Affiliation(s)
- Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Daxin Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuee Zhi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai, China; Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Qian X, Kumaraswamy GK, Zhang S, Gates C, Ananyev GM, Bryant DA, Dismukes GC. Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002. Biotechnol Bioeng 2015; 113:979-88. [PMID: 26479976 DOI: 10.1002/bit.25862] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 11/07/2022]
Abstract
To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations--both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))--were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways.
Collapse
Affiliation(s)
- Xiao Qian
- Waksman Institute, Rutgers University, New Brunswick, New Jersey.,Department of Microbiology and Biochemistry, Rutgers University, New Brunswick, New Jersey
| | | | - Shuyi Zhang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania
| | - Colin Gates
- Waksman Institute, Rutgers University, New Brunswick, New Jersey
| | | | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania.,Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | - G Charles Dismukes
- Waksman Institute, Rutgers University, New Brunswick, New Jersey. .,Department of Chemistry and Biological Chemistry, Rutgers University, New Brunswick, New Jersey, 08901.
| |
Collapse
|