1
|
Sultana T, Morgan DM, Jernberg BD, Zak P, Sinha SC, Colbert CL. Biophysical and Solution Structure Analysis of Critical Residues Involved in the Interaction between the PupB N-Terminal Signaling Domain and PupR C-Terminal Cell Surface Signaling Domain from Pseudomonas capeferrum. Biomolecules 2024; 14:1108. [PMID: 39334875 PMCID: PMC11429574 DOI: 10.3390/biom14091108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Cell surface signaling (CSS) is a means of rapidly adjusting transcription in response to extracellular stimuli in Gram-negative bacteria. The pseudobactin BN7/8 uptake (Pup) system not only imports iron but also upregulates its own transcription through CSS in Pseudomonas capeferrum. In the absence of ferric pseudobactin BN7/8, the signaling components are maintained in a resting state via the formation of a periplasmic complex between the N-terminal signaling domain (NTSD) of the outer membrane iron-transporter, PupB, and the C-terminal CSS domain (CCSSD) of the sigma regulator, PupR. The previously determined 1.6 Å crystal structure of this periplasmic complex has allowed us to probe the structural and thermodynamic consequences of mutating key interfacial residues. In this report, we describe the solution structure of the PupB NTSD and use Nuclear Magnetic Resonance spectroscopy, Isothermal Titration Calorimetry, and Circular Dichroism spectroscopy together with thermal denaturation to investigate whether three PupB point mutations, Q69K, H72D, and L74A, influence the interaction merely due to the chemical nature of the amino acid substitution or also cause changes in overall protein structure. Our results demonstrate that binding to the PupR CCSSD does not alter the structure of PupB NTSD and that the individual mutations have only minor effects on structure. The mutations generally lower thermodynamic stability of the NTSD and weaken binding to the CCSSD. These findings validate the X-ray crystal structure interface, emphasizing the importance of amino acid chemical nature at the interface.
Collapse
Affiliation(s)
- Tajnin Sultana
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; (T.S.); (D.M.M.); (B.D.J.); (P.Z.)
| | - David M. Morgan
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; (T.S.); (D.M.M.); (B.D.J.); (P.Z.)
- Independent Researcher, Winnipeg, MB R3C 0Z5, Canada
| | - Beau D. Jernberg
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; (T.S.); (D.M.M.); (B.D.J.); (P.Z.)
- Bio-Techne Corporation, 614 McKinley Place NE, Minneapolis, MN 55413, USA
| | - Peyton Zak
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; (T.S.); (D.M.M.); (B.D.J.); (P.Z.)
| | - Sangita C. Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; (T.S.); (D.M.M.); (B.D.J.); (P.Z.)
| | - Christopher L. Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108, USA; (T.S.); (D.M.M.); (B.D.J.); (P.Z.)
| |
Collapse
|
2
|
An Extracytoplasmic Function Sigma Factor Required for Full Virulence in Xanthomonas citri pv. citri. J Bacteriol 2022; 204:e0062421. [PMID: 35446118 DOI: 10.1128/jb.00624-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Xanthomonas includes more than 30 phytopathogenic species that infect a wide range of plants and cause severe diseases that greatly impact crop productivity. These bacteria are highly adapted to the soil and plant environment, being found in decaying material, as epiphytes, and colonizing the plant mesophyll. Signal transduction mechanisms involved in the responses of Xanthomonas to environmental changes are still poorly characterized. Xanthomonad genomes typically encode several representatives of the extracytoplasmic function σ (σECF) factors, whose physiological roles remain elusive. In this work, we functionally characterized the Xanthomonas citri pv. citri EcfL, a σECF factor homologous to members of the iron-responsive FecI-like group. We show that EcfL is not required or induced during iron starvation, despite presenting the common features of other FecI-like σECF factors. EcfL positively regulates one operon composed of three genes that encode a TonB-dependent receptor involved in cell surface signaling, an acid phosphatase, and a lectin-domain containing protein. Furthermore, we demonstrate that EcfL is required for full virulence in citrus, and its regulon is induced inside the plant mesophyll and in response to acid stress. Together, our study suggests a role for EcfL in the adaptation of X. citri to the plant environment, in this way contributing to its ability to cause citrus canker disease. IMPORTANCE The Xanthomonas genus comprises a large number of phytopathogenic species that infect a wide variety of economically important plants worldwide. Bacterial adaptation to the plant and soil environment relies on their repertoire of signal transduction pathways, including alternative sigma factors of the extracytoplasmic function family (σECF). Here, we describe a new σECF factor found in several Xanthomonas species, demonstrating its role in Xanthomonas citri virulence to citrus plants. We show that EcfL regulates a single operon containing three genes, which are also conserved in other Xanthomonas species. This study further expands our knowledge on the functions of the widespread family of σECF factors in phytopathogenic bacteria.
Collapse
|
3
|
Braun V, Hartmann MD, Hantke K. Transcription regulation of iron carrier transport genes by ECF sigma factors through signaling from the cell surface into the cytoplasm. FEMS Microbiol Rev 2022; 46:6524835. [PMID: 35138377 PMCID: PMC9249621 DOI: 10.1093/femsre/fuac010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/26/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
Bacteria are usually iron-deficient because the Fe3+ in their environment is insoluble or is incorporated into proteins. To overcome their natural iron limitation, bacteria have developed sophisticated iron transport and regulation systems. In gram-negative bacteria, these include iron carriers, such as citrate, siderophores, and heme, which when loaded with Fe3+ adsorb with high specificity and affinity to outer membrane proteins. Binding of the iron carriers to the cell surface elicits a signal that initiates transcription of iron carrier transport and synthesis genes, referred to as “cell surface signaling”. Transcriptional regulation is not coupled to transport. Outer membrane proteins with signaling functions contain an additional N-terminal domain that in the periplasm makes contact with an anti-sigma factor regulatory protein that extends from the outer membrane into the cytoplasm. Binding of the iron carriers to the outer membrane receptors elicits proteolysis of the anti-sigma factor by two different proteases, Prc in the periplasm, and RseP in the cytoplasmic membrane, inactivates the anti-sigma function or results in the generation of an N-terminal peptide of ∼50 residues with pro-sigma activity yielding an active extracytoplasmic function (ECF) sigma factor. Signal recognition and signal transmission into the cytoplasm is discussed herein.
Collapse
Affiliation(s)
- Volkmar Braun
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Marcus D Hartmann
- Max Planck Institute for Biology, Department of Protein Evolution, Max Planck Ring 5, 72076 Tübingen, Germany
| | - Klaus Hantke
- IMIT Institute, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Jensen JL, Jernberg BD, Sinha SC, Colbert CL. Structural basis of cell-surface signaling by a conserved sigma regulator in Gram-negative bacteria. J Biol Chem 2020; 295:5795-5806. [PMID: 32107313 PMCID: PMC7186176 DOI: 10.1074/jbc.ra119.010697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/23/2020] [Indexed: 01/07/2023] Open
Abstract
Cell-surface signaling (CSS) in Gram-negative bacteria involves highly conserved regulatory pathways that optimize gene expression by transducing extracellular environmental signals to the cytoplasm via inner-membrane sigma regulators. The molecular details of ferric siderophore-mediated activation of the iron import machinery through a sigma regulator are unclear. Here, we present the 1.56 Å resolution structure of the periplasmic complex of the C-terminal CSS domain (CCSSD) of PupR, the sigma regulator in the Pseudomonas capeferrum pseudobactin BN7/8 transport system, and the N-terminal signaling domain (NTSD) of PupB, an outer-membrane TonB-dependent transducer. The structure revealed that the CCSSD consists of two subdomains: a juxta-membrane subdomain, which has a novel all-β-fold, followed by a secretin/TonB, short N-terminal subdomain at the C terminus of the CCSSD, a previously unobserved topological arrangement of this domain. Using affinity pulldown assays, isothermal titration calorimetry, and thermal denaturation CD spectroscopy, we show that both subdomains are required for binding the NTSD with micromolar affinity and that NTSD binding improves CCSSD stability. Our findings prompt us to present a revised model of CSS wherein the CCSSD:NTSD complex forms prior to ferric-siderophore binding. Upon siderophore binding, conformational changes in the CCSSD enable regulated intramembrane proteolysis of the sigma regulator, ultimately resulting in transcriptional regulation.
Collapse
Affiliation(s)
- Jaime L Jensen
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108
| | - Beau D Jernberg
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108
| | - Sangita C Sinha
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108
| | - Christopher L Colbert
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108.
| |
Collapse
|
5
|
Casas Garcia GP, Perugini MA, Lamont IL, Maher MJ. The purification of the σ FpvI/FpvR 20 and σ PvdS/FpvR 20 protein complexes is facilitated at room temperature. Protein Expr Purif 2019; 160:11-18. [PMID: 30878602 DOI: 10.1016/j.pep.2019.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 10/27/2022]
Abstract
Bacteria contain sigma (σ) factors that control gene expression in response to various environmental stimuli. The alternative sigma factors σFpvI and σPvdS bind specifically to the antisigma factor FpvR. These proteins are an essential component of the pyoverdine-based system for iron uptake in Pseudomonas aeruginosa. Due to the uniqueness of this system, where the activities of both the σFpvI and σPvdS sigma factors are regulated by the same antisigma factor, the interactions between the antisigma protein FpvR20 and the σFpvI and σPvdS proteins have been widely studied in vivo. However, difficulties in obtaining soluble, recombinant preparations of the σFpvI and σPvdS proteins have limited their biochemical and structural characterizations. In this study, we describe a purification protocol that resulted in the production of soluble, recombinant His6-σFpvI/FpvR1-67, His6-σFpvI/FpvR1-89, His6-σPvdS/FpvR1-67 and His6-σPvdS/FpvR1-89 protein complexes (where FpvR1-67 and FpvR1-89 are truncated versions of FpvR20) at high purities and concentrations, appropriate for biophysical analyses by circular dichroism spectroscopy and analytical ultracentrifugation. These results showed the proteins to be folded in solution and led to the determination of the affinities of the protein-protein interactions within the His6-σFpvI/FpvR1-67 and His6-σPvdS/FpvR1-67 complexes. A comparison of these values with those previously reported for the His6-σFpvI/FpvR1-89 and His6-σPvdS/FpvR1-89 complexes is made.
Collapse
Affiliation(s)
- G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Edgar RJ, Hampton GE, Garcia GPC, Maher MJ, Perugini MA, Ackerley DF, Lamont IL. Integrated activities of two alternative sigma factors coordinate iron acquisition and uptake by Pseudomonas aeruginosa. Mol Microbiol 2017; 106:891-904. [PMID: 28971540 DOI: 10.1111/mmi.13855] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 11/28/2022]
Abstract
Alternative sigma (σ) factors govern expression of bacterial genes in response to diverse environmental signals. In Pseudomonas aeruginosa σPvdS directs expression of genes for production of a siderophore, pyoverdine, as well as a toxin and a protease. σFpvI directs expression of a receptor for ferripyoverdine import. Expression of the genes encoding σPvdS and σFpvI is iron-regulated and an antisigma protein, FpvR20 , post-translationally controls the activities of the sigma factors in response to the amount of ferripyoverdine present. Here we show that iron represses synthesis of σPvdS to a far greater extent than σFpvI . In contrast ferripyoverdine exerts similar effects on the activities of both sigma factors. Using a combination of in vivo and in vitro assays we show that σFpvI and σPvdS have comparable affinities for, and are equally inhibited by, FpvR20 . Importantly, in the absence of ferripyoverdine the amount of FpvR20 per cell is lower than the amount of σFpvI and σPvdS , allowing basal expression of target genes that is required to activate the signalling pathway when ferripyoverdine is present. This complex interplay of transcriptional and post-translational regulation enables a co-ordinated response to ferripyoverdine but distinct responses to iron.
Collapse
Affiliation(s)
- Rebecca J Edgar
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.,School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | - G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - David F Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
McCullagh P, Lake PT, McCullagh M. Deriving Coarse-Grained Charges from All-Atom Systems: An Analytic Solution. J Chem Theory Comput 2016; 12:4390-9. [DOI: 10.1021/acs.jctc.6b00507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peter McCullagh
- Department
of Statistics, University of Chicago, Chicago, Illinois 60637, United States
| | - Peter T. Lake
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department
of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|