1
|
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H 2O 2 but Slowly with O 2. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:8442-8450. [PMID: 38529354 PMCID: PMC10962548 DOI: 10.1002/ange.202015964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Indexed: 11/09/2022]
Abstract
Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo-EcBfr, pre-loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di-Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di-Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2-unreactive di-Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Michael T. Wilson
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | - Martin Clémancey
- Université Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux, UMR 524917 rue des Martyrs38000GrenobleFrance
| | - Geneviève Blondin
- Université Grenoble AlpesCNRS, CEA, IRIGLaboratoire de Chimie et Biologie des Métaux, UMR 524917 rue des Martyrs38000GrenobleFrance
| | - Justin M. Bradley
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Geoffrey R. Moore
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Nick E. Le Brun
- School of ChemistryUniversity of East AngliaNorwich Research Park NorwichNorfolkNR4 7TJUK
| | - Marina Lučić
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO4 3SQUK
| | | | | |
Collapse
|
2
|
Pullin J, Wilson MT, Clémancey M, Blondin G, Bradley JM, Moore GR, Le Brun NE, Lučić M, Worrall JAR, Svistunenko DA. Iron Oxidation in Escherichia coli Bacterioferritin Ferroxidase Centre, a Site Designed to React Rapidly with H 2 O 2 but Slowly with O 2. Angew Chem Int Ed Engl 2021; 60:8361-8369. [PMID: 33482043 PMCID: PMC8049013 DOI: 10.1002/anie.202015964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/05/2021] [Indexed: 01/08/2023]
Abstract
Both O2 and H2O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo‐EcBfr, pre‐loaded anaerobically with Fe2+, was exposed to O2 or H2O2. We show that O2 binds di‐Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di‐Fe2+ FC, at a rate circa 1000 faster than O2, ensuring an overall 1:4 stoichiometry of iron oxidation by O2. Initially formed Fe3+ can further react with H2O2 (producing protein bound radicals) but relaxes within seconds to an H2O2‐unreactive di‐Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2O2 rather than sequester iron.
Collapse
Affiliation(s)
- Jacob Pullin
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Martin Clémancey
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, 38000, Grenoble, France
| | - Geneviève Blondin
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, UMR 5249, 17 rue des Martyrs, 38000, Grenoble, France
| | - Justin M Bradley
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Geoffrey R Moore
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Nick E Le Brun
- School of Chemistry, University of East Anglia, Norwich Research Park Norwich, Norfolk, NR4 7TJ, UK
| | - Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
3
|
Bradley JM, Svistunenko DA, Wilson MT, Hemmings AM, Moore GR, Le Brun NE. Bacterial iron detoxification at the molecular level. J Biol Chem 2021; 295:17602-17623. [PMID: 33454001 PMCID: PMC7762939 DOI: 10.1074/jbc.rev120.007746] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/07/2020] [Indexed: 01/18/2023] Open
Abstract
Iron is an essential micronutrient, and, in the case of bacteria, its availability is commonly a growth-limiting factor. However, correct functioning of cells requires that the labile pool of chelatable "free" iron be tightly regulated. Correct metalation of proteins requiring iron as a cofactor demands that such a readily accessible source of iron exist, but overaccumulation results in an oxidative burden that, if unchecked, would lead to cell death. The toxicity of iron stems from its potential to catalyze formation of reactive oxygen species that, in addition to causing damage to biological molecules, can also lead to the formation of reactive nitrogen species. To avoid iron-mediated oxidative stress, bacteria utilize iron-dependent global regulators to sense the iron status of the cell and regulate the expression of proteins involved in the acquisition, storage, and efflux of iron accordingly. Here, we survey the current understanding of the structure and mechanism of the important members of each of these classes of protein. Diversity in the details of iron homeostasis mechanisms reflect the differing nutritional stresses resulting from the wide variety of ecological niches that bacteria inhabit. However, in this review, we seek to highlight the similarities of iron homeostasis between different bacteria, while acknowledging important variations. In this way, we hope to illustrate how bacteria have evolved common approaches to overcome the dual problems of the insolubility and potential toxicity of iron.
Collapse
Affiliation(s)
- Justin M Bradley
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| | | | - Michael T Wilson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Andrew M Hemmings
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom; Centre for Molecular and Structural Biochemistry, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Geoffrey R Moore
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, United Kingdom.
| |
Collapse
|
4
|
Benavides BS, Valandro S, Cioloboc D, Taylor AB, Schanze KS, Kurtz DM. Structure of a Zinc Porphyrin-Substituted Bacterioferritin and Photophysical Properties of Iron Reduction. Biochemistry 2020; 59:1618-1629. [PMID: 32283930 PMCID: PMC7927158 DOI: 10.1021/acs.biochem.9b01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron storage protein bacterioferritin (Bfr) binds up to 12 hemes b at specific sites in its protein shell. The heme b can be substituted with the photosensitizer Zn(II)-protoporphyrin IX (ZnPP), and photosensitized reductive iron release from the ferric oxyhydroxide {[FeO(OH)]n} core inside the ZnPP-Bfr protein shell was demonstrated [Cioloboc, D., et al. (2018) Biomacromolecules 19, 178-187]. This report describes the X-ray crystal structure of ZnPP-Bfr and the effects of loaded iron on the photophysical properties of the ZnPP. The crystal structure of ZnPP-Bfr shows a unique six-coordinate zinc in the ZnPP with two axial methionine sulfur ligands. Steady state and transient ultraviolet-visible absorption and luminescence spectroscopies show that irradiation with light overlapping the Soret absorption causes oxidation of ZnPP to the cation radical ZnPP•+ only when the ZnPP-Bfr is loaded with [FeO(OH)]n. Femtosecond transient absorption spectroscopy shows that this photooxidation occurs from the singlet excited state (1ZnPP*) on the picosecond time scale and is consistent with two oxidizing populations of Fe3+, which do not appear to involve the ferroxidase center iron. We propose that [FeO(OH)]n clusters at or near the inner surface of the protein shell are responsible for ZnPP photooxidation. Hopping of the photoinjected electrons through the [FeO(OH)]n would effectively cause migration of Fe2+ through the inner cavity to pores where it exits the protein. Reductive iron mobilization is presumed to be a physiological function of Bfrs. The phototriggered Fe3+ reduction could be used to identify the sites of iron mobilization within the Bfr protein shell.
Collapse
Affiliation(s)
- Brenda S Benavides
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Silvano Valandro
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Daniela Cioloboc
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Alexander B Taylor
- Department of Biochemistry and Structural Biology and X-ray Crystallography Core Laboratory, University of Texas Health Science Center at San Antonio (UT Health San Antonio), San Antonio, Texas 78229, United States
| | - Kirk S Schanze
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Donald M Kurtz
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
5
|
Hagen WR, Hagedoorn PL, Honarmand Ebrahimi K. The workings of ferritin: a crossroad of opinions. Metallomics 2018; 9:595-605. [PMID: 28573266 DOI: 10.1039/c7mt00124j] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biochemistry of the essential element iron is complicated by radical chemistry associated with Fe(ii) ions and by the extremely low solubility of the Fe(iii) ion in near-neutral water. To mitigate these problems cells from all domains of life synthesize the protein ferritin to take up and oxidize Fe(ii) and to form a soluble storage of Fe(iii) from which iron can be made available for physiology. A long history of studies on ferritin has not yet resulted in a generally accepted mechanism of action of this enzyme. In fact strong disagreement exists between extant ideas on several key steps in the workings of ferritin. The scope of this review is to explain the experimental background of these controversies and to indicate directions towards their possible resolution.
Collapse
Affiliation(s)
- Wilfred R Hagen
- Delft University of Technology, Department of Biotechnology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | | | | |
Collapse
|
6
|
Ebrahimi KH, Bill E, Hagedoorn PL, Hagen WR. Spectroscopic evidence for the role of a site of the di-iron catalytic center of ferritins in tuning the kinetics of Fe(ii) oxidation. MOLECULAR BIOSYSTEMS 2017; 12:3576-3588. [PMID: 27722502 DOI: 10.1039/c6mb00235h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ferritin is a nanocage protein made of 24 subunits. Its major role is to manage intracellular concentrations of free Fe(ii) and Fe(iii) ions, which is pivotal for iron homeostasis across all domains of life. This function of the protein is regulated by a conserved di-iron catalytic center and has been the subject of extensive studies over the past 50 years. Yet, it has not been fully understood how Fe(ii) is oxidized in the di-iron catalytic center and it is not known why eukaryotic and microbial ferritins oxidize Fe(ii) with different kinetics. In an attempt to obtain a new insight into the mechanism of Fe(ii) oxidation and understand the origin of the observed differences in the catalysis of Fe(ii) oxidation among ferritins we studied and compared the mechanism of Fe(ii) oxidation in the eukaryotic human H-type ferritin (HuHF) and the archaeal ferritin from Pyrococcus furiosus (PfFtn). The results show that the spectroscopic characteristics of the intermediate of Fe(ii) oxidation and the Fe(iii)-products are the same in these two ferritins supporting the proposal of unity in the mechanism of Fe(ii) oxidation among eukaryotic and microbial ferritins. Moreover, we observed that a site in the di-iron catalytic center controls the distribution of Fe(ii) among subunits of HuHF and PfFtn differently. This observation explains the reported differences between HuHF and PfFtn in the kinetics of Fe(ii) oxidation and the amount of O2 consumed per Fe(ii) oxidized. These results provide a fresh understanding of the mechanism of Fe(ii) oxidation by ferritins.
Collapse
Affiliation(s)
- Kourosh Honarmand Ebrahimi
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Peter-Leon Hagedoorn
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wilfred R Hagen
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
7
|
Diversity of Fe 2+ entry and oxidation in ferritins. Curr Opin Chem Biol 2017; 37:122-128. [DOI: 10.1016/j.cbpa.2017.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 01/08/2023]
|
8
|
Bradley JM, Svistunenko DA, Moore GR, Le Brun NE. Tyr25, Tyr58 and Trp133 ofEscherichia colibacterioferritin transfer electrons between iron in the central cavity and the ferroxidase centre. Metallomics 2017; 9:1421-1428. [DOI: 10.1039/c7mt00187h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tyr58 and Trp133 play key roles in the formation and decay of the Tyr25 radical species ofE. coliBFR.
Collapse
Affiliation(s)
- Justin M. Bradley
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| | | | - Geoffrey R. Moore
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| | - Nick E. Le Brun
- Centre for Molecular and Structural Biochemistry
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| |
Collapse
|
9
|
Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem 2016; 21:575-88. [PMID: 27369780 PMCID: PMC5010389 DOI: 10.1007/s00775-016-1372-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/14/2016] [Indexed: 11/30/2022]
Abstract
Binuclear non-heme iron enzymes activate O2 to perform diverse chemistries. Three different structural mechanisms of O2 binding to a coupled binuclear iron site have been identified utilizing variable-temperature, variable-field magnetic circular dichroism spectroscopy (VTVH MCD). For the μ-OH-bridged Fe(II)2 site in hemerythrin, O2 binds terminally to a five-coordinate Fe(II) center as hydroperoxide with the proton deriving from the μ-OH bridge and the second electron transferring through the resulting μ-oxo superexchange pathway from the second coordinatively saturated Fe(II) center in a proton-coupled electron transfer process. For carboxylate-only-bridged Fe(II)2 sites, O2 binding as a bridged peroxide requires both Fe(II) centers to be coordinatively unsaturated and has good frontier orbital overlap with the two orthogonal O2 π* orbitals to form peroxo-bridged Fe(III)2 intermediates. Alternatively, carboxylate-only-bridged Fe(II)2 sites with only a single open coordination position on an Fe(II) enable the one-electron formation of Fe(III)-O2 (-) or Fe(III)-NO(-) species. Finally, for the peroxo-bridged Fe(III)2 intermediates, further activation is necessary for their reactivities in one-electron reduction and electrophilic aromatic substitution, and a strategy consistent with existing spectral data is discussed.
Collapse
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, CA, 94305-5080, USA.
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Lo FC, Hsieh CC, Maestre-Reyna M, Chen CY, Ko TP, Horng YC, Lai YC, Chiang YW, Chou CM, Chiang CH, Huang WN, Lin YH, Bohle DS, Liaw WF. Crystal Structure Analysis of the Repair of Iron Centers Protein YtfE and Its Interaction with NO. Chemistry 2016; 22:9768-76. [DOI: 10.1002/chem.201600990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Feng-Chun Lo
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chang-Chih Hsieh
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | | | - Chin-Yu Chen
- Department of Life Sciences; National Central University; Taoyuan Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry; Academia Sinica; Taipei Taiwan
| | - Yih-Chern Horng
- Department of Chemistry; National Changhua University of Education; Changhua Taiwan
| | - Yei-Chen Lai
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chih-Mao Chou
- Department of Life Sciences; National Central University; Taoyuan Taiwan
| | | | - Wei-Ning Huang
- Department of Biotechnology; Yuanpei University; Hsinchu Taiwan
| | - Yi-Hung Lin
- National Synchrotron Radiation Research Center Hsinchu; Taiwan
| | - D. Scott Bohle
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A2K6 Canada
| | - Wen-Feng Liaw
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| |
Collapse
|
11
|
Bradley JM, Le Brun NE, Moore GR. Ferritins: furnishing proteins with iron. J Biol Inorg Chem 2016; 21:13-28. [PMID: 26825805 PMCID: PMC4771812 DOI: 10.1007/s00775-016-1336-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/06/2016] [Indexed: 12/04/2022]
Abstract
Ferritins are a superfamily of iron oxidation, storage and mineralization proteins found throughout the animal, plant, and microbial kingdoms. The majority of ferritins consist of 24 subunits that individually fold into 4-α-helix bundles and assemble in a highly symmetric manner to form an approximately spherical protein coat around a central cavity into which an iron-containing mineral can be formed. Channels through the coat at inter-subunit contact points facilitate passage of iron ions to and from the central cavity, and intrasubunit catalytic sites, called ferroxidase centers, drive Fe2+ oxidation and O2 reduction. Though the different members of the superfamily share a common structure, there is often little amino acid sequence identity between them. Even where there is a high degree of sequence identity between two ferritins there can be major differences in how the proteins handle iron. In this review we describe some of the important structural features of ferritins and their mineralized iron cores, consider how iron might be released from ferritins, and examine in detail how three selected ferritins oxidise Fe2+ to explore the mechanistic variations that exist amongst ferritins. We suggest that the mechanistic differences reflect differing evolutionary pressures on amino acid sequences, and that these differing pressures are a consequence of different primary functions for different ferritins.
Collapse
Affiliation(s)
- Justin M Bradley
- Center for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nick E Le Brun
- Center for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Geoffrey R Moore
- Center for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|