1
|
Dyson HJ. Vital for Viruses: Intrinsically Disordered Proteins. J Mol Biol 2023; 435:167860. [PMID: 37330280 PMCID: PMC10656058 DOI: 10.1016/j.jmb.2022.167860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/19/2023]
Abstract
Viruses infect all kingdoms of life; their genomes vary from DNA to RNA and in size from 2kB to 1 MB or more. Viruses frequently employ disordered proteins, that is, protein products of virus genes that do not themselves fold into independent three-dimensional structures, but rather, constitute a versatile molecular toolkit to accomplish a range of functions necessary for viral infection, assembly, and proliferation. Interestingly, disordered proteins have been discovered in almost all viruses so far studied, whether the viral genome consists of DNA or RNA, and whatever the configuration of the viral capsid or other outer covering. In this review, I present a wide-ranging set of stories illustrating the range of functions of IDPs in viruses. The field is rapidly expanding, and I have not tried to include everything. What is included is meant to be a survey of the variety of tasks that viruses accomplish using disordered proteins.
Collapse
Affiliation(s)
- H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
2
|
Target-binding behavior of IDPs via pre-structured motifs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:187-247. [PMID: 34656329 DOI: 10.1016/bs.pmbts.2021.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Pre-Structured Motifs (PreSMos) are transient secondary structures observed in many intrinsically disordered proteins (IDPs) and serve as protein target-binding hot spots. The prefix "pre" highlights that PreSMos exist a priori in the target-unbound state of IDPs as the active pockets of globular proteins pre-exist before target binding. Therefore, a PreSMo is an "active site" of an IDP; it is not a spatial pocket, but rather a secondary structural motif. The classical and perhaps the most effective approach to understand the function of a protein has been to determine and investigate its structure. Ironically or by definition IDPs do not possess structure (here structure refers to tertiary structure only). Are IDPs then entirely structureless? The PreSMos provide us with an atomic-resolution answer to this question. For target binding, IDPs do not rely on the spatial pockets afforded by tertiary or higher structures. Instead, they utilize the PreSMos possessing particular conformations that highly presage the target-bound conformations. PreSMos are recognized or captured by targets via conformational selection (CS) before their conformations eventually become stabilized via structural induction into more ordered bound structures. Using PreSMos, a number of, if not all, IDPs can bind targets following a sequential pathway of CS followed by an induced fit (IF). This chapter presents several important PreSMos implicated in cancers, neurodegenerative diseases, and other diseases along with discussions on their conformational details that mediate target binding, a structural rationale for unstructured proteins.
Collapse
|
3
|
Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29:e2031. [PMID: 30609200 DOI: 10.1002/rmv.2031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.
Collapse
Affiliation(s)
- Margarita A Kurnaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Nuclear Organization and Pathologies, CNRS, UMR8126, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Kunihara T, Hayashi Y, Arai M. Conformational diversity in the intrinsically disordered HIV-1 Tat protein induced by zinc and pH. Biochem Biophys Res Commun 2018; 509:564-569. [PMID: 30600181 DOI: 10.1016/j.bbrc.2018.12.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) transactivator of transcription (Tat) is an intrinsically disordered protein that exerts multiple functions, including activation of HIV-1 replication and induction of T-cell apoptosis and cytokine secretion via zinc binding and cellular uptake by endocytosis. However, the effects of zinc and endosomal low pH on the structure of isolated Tat protein are poorly understood. Here, we purified a monomeric zinc-bound Tat and studied its structure and acid denaturation by circular dichroism, NMR, and small-angle X-ray scattering. We found that at pH 7, the zinc-bound Tat was in a pre-molten globule state; it exhibited largely disordered conformations with residual helices and was slightly more compact than the fully unfolded states that were observed at pH 4 or in the zinc-free form. Moreover, acid-induced unfolding transitions in secondary structure and molecular size occurred at different pH ranges, indicating the presence of an expanded and helical intermediate at pH ∼6. Taken together, the extent of structural disorder in the intrinsically disordered Tat protein is highly sensitive to zinc and pH, suggesting that zinc binding and pH affect Tat structures and thereby control the versatile functions of Tat.
Collapse
Affiliation(s)
- Tomoko Kunihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
5
|
Cook EC, Sahu D, Bastidas M, Showalter SA. Solution Ensemble of the C-Terminal Domain from the Transcription Factor Pdx1 Resembles an Excluded Volume Polymer. J Phys Chem B 2018; 123:106-116. [PMID: 30525611 DOI: 10.1021/acs.jpcb.8b10051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pancreatic and duodenal homeobox 1 (Pdx1) is an essential pancreatic transcription factor. The C-terminal intrinsically disordered domain of Pdx1 (Pdx1-C) has a heavily biased amino acid composition; most notably, 18 of 83 residues are proline, including a hexaproline cluster near the middle of the chain. For these reasons, Pdx1-C is an attractive target for structure characterization, given the availability of suitable methods. To determine the solution ensembles of disordered proteins, we have developed a suite of 13C direct-detect NMR experiments that provide high spectral quality, even in the presence of strong proline enrichment. Here, we have extended our suite of NMR experiments to include four new pulse programs designed to record backbone residual dipolar couplings in a 13C,15N-CON detection format. Using our NMR strategy, in combination with small-angle X-ray scattering measurements and Monte Carlo simulations, we have determined that Pdx1-C is extended in solution, with a radius of gyration and internal scaling similar to that of an excluded volume polymer, and a subtle tendency toward a collapsed structure to the N-terminal side of the hexaproline sequence. This structure leaves Pdx1-C exposed for interactions with trans-regulatory co-factors that contribute with Pdx1 to transcription control in the cell.
Collapse
|
6
|
Kim DH, Han KH. PreSMo Target-Binding Signatures in Intrinsically Disordered Proteins. Mol Cells 2018; 41:889-899. [PMID: 30352491 PMCID: PMC6199570 DOI: 10.14348/molcells.2018.0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/26/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are highly unorthodox proteins that do not form three-dimensional structures under physiological conditions. The discovery of IDPs has destroyed the classical structure-function paradigm in protein science, 3-D structure = function, because IDPs even without well-folded 3-D structures are still capable of performing important biological functions and furthermore are associated with fatal diseases such as cancers, neurodegenerative diseases and viral pandemics. Pre-structured motifs (PreSMos) refer to transient local secondary structural elements present in the target-unbound state of IDPs. During the last two decades PreSMos have been steadily acknowledged as the critical determinants for target binding in dozens of IDPs. To date, the PreSMo concept provides the most convincing structural rationale explaining the IDP-target binding behavior at an atomic resolution. Here we present a brief developmental history of PreSMos and describe their common characteristics. We also provide a list of newly discovered PreSMos along with their functional relevance.
Collapse
Affiliation(s)
- Do-Hyoung Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141,
Korea
| | - Kyou-Hoon Han
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141,
Korea
| |
Collapse
|
7
|
Gibbs EB, Cook EC, Showalter SA. Application of NMR to studies of intrinsically disordered proteins. Arch Biochem Biophys 2017; 628:57-70. [PMID: 28502465 DOI: 10.1016/j.abb.2017.05.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/20/2022]
Abstract
The prevalence of intrinsically disordered protein regions, particularly in eukaryotic proteins, and their clear functional advantages for signaling and gene regulation have created an imperative for high-resolution structural and mechanistic studies. NMR spectroscopy has played a central role in enhancing not only our understanding of the intrinsically disordered native state, but also how that state contributes to biological function. While pathological functions associated with protein aggregation are well established, it has recently become clear that disordered regions also mediate functionally advantageous assembly into high-order structures that promote the formation of membrane-less sub-cellular compartments and even hydrogels. Across the range of functional assembly states accessed by disordered regions, post-translational modifications and regulatory macromolecular interactions, which can also be investigated by NMR spectroscopy, feature prominently. Here we will explore the many ways in which NMR has advanced our understanding of the physical-chemical phase space occupied by disordered protein regions and provide prospectus for the future role of NMR in this emerging and exciting field.
Collapse
Affiliation(s)
- Eric B Gibbs
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|